【題目】已知關于x的一元二次方程。
(1)求證:方程有兩個不相等的實數根;
(2)若△ABC的兩邊AB、AC的長是方程的兩個實數根,第三邊BC的長為5。當△ABC是等腰三角形時,求k的值。
【答案】5或4.
【解析】(1)先計算出△=1,然后根據判別式的意義即可得到結論;
(2)先利用公式法求出方程的解為x1=k,x2=k+1,然后分類討論:AB=k,AC=k+1,當AB=BC或AC=BC時△ABC為等腰三角形,然后求出k的值.
解:(1)證明:∵△=(2k+1)2-4(k2+k)=1>0,
∴方程有兩個不相等的實數根;
(2)解:一元二次方程x2-(2k+1)x+k2+k=0的解為x=,即x1=k,x2=k+1,
∵k<k+1,
∴AB≠AC.
當AB=k,AC=k+1,且AB=BC時,△ABC是等腰三角形,則k=5;
當AB=k,AC=k+1,且AC=BC時,△ABC是等腰三角形,則k+1=5,解得k=4,
所以k的值為5或4.
科目:初中數學 來源: 題型:
【題目】(1)已知實數a、b滿足(a+b)2=3,(a﹣b)2=27,求a2+b2的值.
(2)先化簡,再求值:3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】常州春秋旅行社為吸引市民組團去天水灣風景區(qū)旅游,推出了如下收費標準:
某單位組織員工去天水灣風景區(qū)旅游,共支付給春秋旅行社旅游費用27000元,請問該單位這次共有多少員工去天水灣風景區(qū)旅游?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com