【題目】如圖,在平面直角坐標系內(nèi),已知直線y=x+4與x軸、y軸分別相交于點A和點C,拋物線y=x2+kx+k﹣1圖象過點A和點C,拋物線與x軸的另一交點是B,

(1)求出此拋物線的解析式、對稱軸以及B點坐標;
(2)若在y軸負半軸上存在點D,能使得以A、C、D為頂點的三角形與△ABC相似,請求出點D的坐標.

【答案】
(1)

解:由x=0得y=0+4=4,則點C的坐標為(0,4);

由y=0得x+4=0,解得x=﹣4,則點A的坐標為(﹣4,0);

把點C(0,4)代入y=x2+kx+k﹣1,得k﹣1=4,

解得:k=5,

∴此拋物線的解析式為y=x2+5x+4,

∴此拋物線的對稱軸為x=﹣ =﹣

令y=0得x2+5x+4=0,

解得:x1=﹣1,x2=﹣4,

∴點B的坐標為(﹣1,0)


(2)

解:∵A(﹣4,0),C(0,4),

∴OA=OC=4,

∴∠OCA=∠OAC.

∵∠AOC=90°,OB=1,OC=OA=4,

∴AC= =4 ,AB=OA﹣OB=4﹣1=3.

∵點D在y軸負半軸上,∴∠ADC<∠AOC,即∠ADC<90°.

又∵∠ABC>∠BOC,即∠ABC>90°,∴∠ABC>∠ADC.

∴由條件“以A、C、D為頂點的三角形與△ABC相似”可得△CAD∽△ABC,

= ,即 =

解得:CD= ,

∴OD=CD﹣CO= ﹣4= ,

∴點D的坐標為(0,﹣ ).


【解析】(1)先求出A、C兩點的坐標,再代入拋物線的解析式,就可求出該拋物線的解析式,然后根據(jù)拋物線的對稱軸方程x=﹣ 求出拋物線的對稱軸,根據(jù)拋物線上點的坐標特征求出點B的坐標;(2)易得∠OAC=∠OCA,∠ABC>∠ADC,由此根據(jù)條件即可得到△CAD∽△ABC,然后運用相似三角形的性質(zhì)可求出CD的長,由此可得到OD的長,就可解決問題.
【考點精析】利用二次函數(shù)的圖象和二次函數(shù)的性質(zhì)對題目進行判斷即可得到答案,需要熟知二次函數(shù)圖像關(guān)鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點;增減性:當a>0時,對稱軸左邊,y隨x增大而減。粚ΨQ軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,直徑AF平分∠BAC,交BC于點D.
(1)如圖1,求證:AB=AC;
(2)如圖2,延長BA到點E,連接ED、EC,ED交AC于點G,且ED=EC,求證:∠EGC=∠ECA+2∠ACB;
(3)如圖3,在(2)的條件下,當BC是⊙O的直徑時,取DC的中點M,連接AM并延長交圓于點N,且EG=5,連接CN并求CN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】給定直線l:y=kx,拋物線C:y=ax2+bx+1.

(1)當b=1時,l與C相交于A,B兩點,其中A為C的頂點,B與A關(guān)于原點對稱,求a的值;
(2)若把直線l向上平移k2+1個單位長度得到直線l′,則無論非零實數(shù)k取何值,直線l′與拋物線C都只有一個交點.
①求此拋物線的解析式;
②若P是此拋物線上任一點,過P作PQ∥y軸且與直線y=2交于Q點,O為原點.求證:OP=PQ.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知等腰梯形ABCD中,AD∥BC,AD=1,BC=3,AB=CD=2,點E在BC邊上,AE與BD交于點F,∠BAE=∠DBC.
(1)求證:△ABE∽△BCD;
(2)求tan∠DBC的值;
(3)求線段BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,梯形ABCD中,AD∥BC,AB=DC,點P是AD邊上一點,聯(lián)結(jié)PB、PC,且AB2=APPD,則圖中有對相似三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解不等式2x﹣3< ,并把解集在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一條長為2014個單位長度且沒有彈性的細線(線的粗細忽略不計)的一端固定在點A處,并按A﹣B﹣C﹣D﹣A…的規(guī)律繞在四邊形ABCD的邊上,則細線另一端所在位置的點的坐標是( )

A.(﹣1,0)
B.(1,﹣2)
C.(1,1)
D.(﹣1,﹣1)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,從點A看一山坡上的電線桿PQ,觀測點P的仰角是45°,向前走6m到達B點,測得頂端點P和桿底端點Q的仰角分別是60°和30°,求該電線桿PQ的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 )÷ ,其中a=2017°+(﹣ 1+ tan30°.

查看答案和解析>>

同步練習冊答案