【題目】如圖,ABC中,AB、AC邊上的高CE、BD相交于點P,圖中與BPE相似的三角形共有( 。

A. 2個 B. 3個 C. 4個 D. 5個

【答案】B

【解析】

由三角形的兩條高線可得∠BDA=BDC=CEA=CEB=90°、根據(jù)∠PBE=ABDPBE∽△ABD、BPE=CPDBPE∽△CPD、PCD=ACECPD∽△CAE,從而得BPE∽△CAE,據(jù)此可得答案.

BDAC、CEAB,

∴∠BDA=BDC=CEA=CEB=90°,

∵∠PBE=ABD,

∴△PBE∽△ABD,

∵∠BPE=CPD,

∴△BPE∽△CPD,

∵∠PCD=ACE,

∴△CPD∽△CAE,

∴△BPE∽△CAE,

綜上,圖中與BPE相似的三角形有BAD、CPD、CAE3個,

故選B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,,,將繞著點旋轉(zhuǎn)一定的角度,得到.

(1)若點邊上中點,連接,則線段的范圍為________.

(2)如圖,當直角頂點邊上時,延長,交邊于點,請問線段、具有怎樣的數(shù)量關系,請寫出探索過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,線段AB 是⊙O的直徑,弦CD⊥AB于點H,點M是弧CBD 上任意一點,AH=2,CH=4.

(1)求⊙O 的半徑r 的長度;

(2)求sin∠CMD;

(3)直線BM交直線CD于點E,直線MH交⊙O 于點 N,連接BNCE于點 F,求HEHF的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知菱形ABCD,AB=AC,E、F分別是BC,AD的中點,連接AE、CF.

(1)求證:四邊形AECF是矩形;

(2)若AB=2,求菱形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,∠ACB=90°,AC=BC,在ABC外側(cè)作直線CP,點A關于直線CP的對稱點為D,連接AD,BD,其中BD交直線CP于點E.

(1)如圖1,ACP=15°.

①依題意補全圖形;

②求∠CBD的度數(shù);

(2)如圖2,若45°<ACP<90°,直接用等式表示線段AC,DE,BE之間的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩名隊員參加射擊訓練,每人射擊10次,成績分別如下:

根據(jù)以上信息,整理分析數(shù)據(jù)如下:

平均成績/環(huán)

中位數(shù)/環(huán)

眾數(shù)/環(huán)

方差

a

7

7

1.2

7

b

8

c

1a_____b_____;c_____;

2)填空:(填).

①從平均數(shù)和中位數(shù)的角度來比較,成績較好的是_____;

②從平均數(shù)和眾數(shù)的角度來比較,成績較好的是_____;

③成績相對較穩(wěn)定的是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c的頂點坐標為(2,9),與y軸交于點A(0,5),與x軸交于點E、B.

(1)求二次函數(shù)y=ax2+bx+c的表達式;

(2)過點AAC平行于x軸,交拋物線于點C,點P為拋物線上的一點(點PAC上方),作PD平行于y軸交AB于點D,問當點P在何位置時,四邊形APCD的面積最大?并求出最大面積;

(3)若點M在拋物線上,點N在其對稱軸上,使得以A、E、N、M為頂點的四邊形是平行四邊形,且AE為其一邊,求點M、N的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠BAC90°,AB5cmBC13cm,點D在線段AC上,且CD7cm,動點P從距B15cmE點出發(fā),以每秒2cm的速度沿射線EA的方向運動,時間為t秒.

1)求AD的長.

2)用含有t的代數(shù)式表示AP的長.

3)在運動過程中,是否存在某個時刻,使△ABC與△ADP全等?若存在,請求出t值;若不存在,請說明理由.

4)直接寫出t______秒時,△PBC為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,動點P在平面直角坐標系中按圖中箭頭所示方向運動,第1次從原點運動到點(1,1),第2次接著運動到點(2,0),第3次接著運動到點(3,2),……,按這樣的運動規(guī)律,經(jīng)過第2011次運動后,動點P的坐標是( )

A.2011,0B.2011,1C.2011,2D.2010,0

查看答案和解析>>

同步練習冊答案