(2013•濰坊)如圖,四邊形ABCD是平行四邊形,以對角線BD為直徑作⊙O,分別與BC,AD相交于點E,F(xiàn).
(1)求證:四邊形BEDF為矩形;
(2)BD2=BE•BC,試判斷直線CD與⊙O的位置關系,并說明理由.
分析:(1)求出∠DEB=∠DFB=90°,根據(jù)平行四邊形的性質推出AD∥BC,推出∠FBC=∠DFB=90°,∠EDA=∠BED=90°,根據(jù)矩形的判定推出即可;
(2)根據(jù)已知求出△BED∽△BDC,推出∠BDC=∠BED=90°,根據(jù)切線判定推出即可.
解答:(1)證明:∵BD為⊙O直徑,
∴∠DEB=∠DFB=90°,
∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∴∠FBC=∠DFB=90°,∠EDA=∠BED=90°,
∴∠FBC=∠DFB=∠EDA=∠BED=90°,
∴四邊形BEDF為矩形;
(2)解:直線CD與⊙O的位置關系式相切,
理由是:∵BD2=BE•BC,
BD
BE
=
BC
BD

∵∠DBC=∠CBD,
∴△BED∽△BDC,
∴∠BDC=∠BED=90°,
即BD⊥CD,
∴CD與⊙O相切.
點評:本題考查了平行四邊形的性質,矩形的判定,相似三角形的性質和判定,切線的判定的應用,主要考查學生的推理能力.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•濰坊)如圖是常用的一種圓頂螺桿,它的俯視圖正確的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•濰坊)如圖,⊙O的直徑AB=12,CD是⊙O的弦,CD⊥AB,垂足為P,且BP:AP=1:5,則CD的長為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•濰坊)如圖,直角三角形ABC中,∠ACB=90°,AB=10,BC=6,在線段AB上取一點D,作DF⊥AB交AC于點F,現(xiàn)將△ADF沿DF折疊,使點A落在線段DB上,對應點記為A1;AD的中點E的對應點記為E1,若△E1FA1∽△E1BF,則AD=
16
5
16
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•濰坊)如圖,拋物線y=ax2+bx+c關于直線x=1對稱,與坐標軸交與A,B,C三點,且AB=4,點D(2,
32
)在拋物線上,直線l是一次函數(shù)y=kx-2(k≠0)的圖象,點O是坐標原點.
(1)求拋物線的解析式;
(2)若直線l平分四邊形OBDC的面積,求k的值;
(3)把拋物線向左平移1個單位,再向下平移2個單位,所得拋物線與直線l交于M,N兩點,問在y軸正半軸上是否存在一定點P,使得不論k取何值,直線PM與PN總是關于y軸對稱?若存在,求出P點坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案