已知在樓AC頂觀測地面目標(biāo)B的俯角為30°,樓AC高25米,求目標(biāo)B與樓AC的水平距離.

解:在Rt△ABC中,tanB=,∴BC=

答:目標(biāo)B 與樓AC的水平距離為25米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•高淳縣二模)某班數(shù)學(xué)興趣小組為了測量建筑物AB與CD的高度,他們選取了地面上點(diǎn)E和建筑物CD的頂端點(diǎn)C為觀測點(diǎn),已知在點(diǎn)C處測得點(diǎn)A的仰角為45°;在點(diǎn)E處測得點(diǎn)C的仰角為30°,測得點(diǎn)A的仰角為37°.又測得DE的長度為9米.
(1)求建筑物CD的高度;
(2)求建筑物AB的高度.
(參考數(shù)據(jù):
3
≈1.73,sin37°≈
3
5
,cos37°≈
4
5
,tan37°≈
3
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

兩幢垂直于地面的大樓相距110米,從甲樓頂部看乙樓頂部的仰角為30°,已知甲樓高35米,
(1)根據(jù)題意,在圖中畫出示意圖;
(2)求乙樓的高度為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•湖州)一節(jié)數(shù)學(xué)課后,老師布置了一道課后練習(xí)題:
如圖,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC,于點(diǎn)O,點(diǎn)PD分別在AO和BC上,PB=PD,DE⊥AC于點(diǎn)E,求證:△BPO≌△PDE.

(1)理清思路,完成解答(2)本題證明的思路可用下列框圖表示:

根據(jù)上述思路,請你完整地書寫本題的證明過程.
(2)特殊位置,證明結(jié)論
若PB平分∠ABO,其余條件不變.求證:AP=CD.
(3)知識遷移,探索新知
若點(diǎn)P是一個動點(diǎn),點(diǎn)P運(yùn)動到OC的中點(diǎn)P′時,滿足題中條件的點(diǎn)D也隨之在直線BC上運(yùn)動到點(diǎn)D′,請直接寫出CD′與AP′的數(shù)量關(guān)系.(不必寫解答過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(浙江湖州卷)數(shù)學(xué)(解析版) 題型:解答題

一節(jié)數(shù)學(xué)課后,老師布置了一道課后練習(xí)題:

如圖,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC,于點(diǎn)O,點(diǎn)PD分別在AO和BC上,PB=PD,DE⊥AC于點(diǎn)E,求證:△BPO≌△PDE.

(1)理清思路,完成解答(2)本題證明的思路可用下列框圖表示:

根據(jù)上述思路,請你完整地書寫本題的證明過程.

(2)特殊位置,證明結(jié)論

若PB平分∠ABO,其余條件不變.求證:AP=CD.

(3)知識遷移,探索新知

若點(diǎn)P是一個動點(diǎn),點(diǎn)P運(yùn)動到OC的中點(diǎn)P′時,滿足題中條件的點(diǎn)D也隨之在直線BC上運(yùn)動到點(diǎn)D′,請直接寫出CD′與AP′的數(shù)量關(guān)系.(不必寫解答過程)

 

查看答案和解析>>

同步練習(xí)冊答案