【題目】如圖,菱形ABCD中,∠B=60°,AB=3cm,過點A作∠EAF=60°,分別交DC,BC的延長線于點E,F,連接EF.
(1)如圖1,當CE=CF時,判斷△AEF的形狀,并說明理由;
(2)若△AEF是直角三角形,求CE,CF的長度;
(3)當CE,CF的長度發(fā)生變化時,△CEF的面積是否會發(fā)生變化,請說明理由.
【答案】(1) △AEF是等邊三角形,證明見解析;(2) CF=,CE=6或CF=6,CE=;(3) △CEF的面積不發(fā)生變化,理由見解析.
【解析】
(1)證明△BCE≌△DCF(SAS),得出∠BE=DF,CBE=∠CDF,證明△ABE≌△ADF(SAS),得出AE=AF,即可得出結論;
(2)分兩種情況:①∠AFE=90°時,連接AC、MN,證明△MAC≌△NAD(ASA),得出AM=AN,CM=DN,證出△AMN是等邊三角形,得出AM=MN=AN,設AM=AN=MN=m,DN=CM=b,BM=CN=a,證明△CFN∽△DAN,得出,得出FN=,AF=m+,同理AE=m+,在Rt△AEF中,由直角三角形的性質得出AE=2AF,得出m+=2(m+),得出b=2a,因此,得出CF=AD=,同理CE=2AB=6;
②∠AEF=90°時,同①得出CE=AD=,CF=2AB=6;
(3)作FH⊥CD于H,如圖4所示:由(2)得BM=CN=a,CM=DN=b,證明△ADN∽△FCN,得出,由平行線得出∠FCH=∠B=60°,△CEM∽△BAM,得出,得出,求出CF×CE=AD×AB=3×3=9,由三角函數(shù)得出CH=CF×sin∠FCH=CF×sin60°=CF,即可得出結論.
解:(1)△AEF是等邊三角形,理由如下:
連接BE、DF,如圖1所示:
∵四邊形ABCD是菱形,
∴AB=BC=DC=AD,∠ABC=∠ADC,
在△BCE和△DCF中,,
∴△BCE≌△DCF(SAS),
∴∠BE=DF,CBE=∠CDF,
∴∠ABC+∠CBE=∠ADC+∠CDF,
即∠ABE=∠ADF,
在△ABE和△ADF中,,
∴△ABE≌△ADF(SAS),
∴AE=AF,又∵∠EAF=60°,
∴△AEF是等邊三角形;
(2)分兩種情況:
①∠AFE=90°時,連接AC、MN,如圖2所示:
∵四邊形ABCD是菱形,
∴AB=BC=DC=AD=3,∠D=∠B=60°,AD∥BC,AB∥CD,
∴△ABC和△ADC是等邊三角形,
∴AC=AD,∠ACM=∠D=∠CAD=60°=∠EAF,
∴∠MAC=∠NAD,
在△MAC和△NAD中,,
∴△MAC≌△NAD(ASA),
∴AM=AN,CM=DN,
∵∠EAF=60°,
∴△AMN是等邊三角形,
∴AM=MN=AN,
設AM=AN=MN=m,DN=CM=b,BM=CN=a,
∵CF∥AD,
∴△CFN∽△DAN,
∴,
∴FN=,
∴AF=m+,
同理:AE=m+,
在Rt△AEF中,∵∠EAF=60°,
∴∠AEF=30°,
∴AE=2AF,
∴m+=2(m+),
整理得:b2﹣ab﹣2a2=0,
(b﹣2a)(b+a)=0,
∵b+a≠0,
∴b﹣2a=0,
∴b=2a,
∴=,
∴CF=AD=,
同理:CE=2AB=6;
②∠AEF=90°時,連接AC、MN,如圖3所示:
同①得:CE=AD=,CF=2AB=6;
(3)當CE,CF的長度發(fā)生變化時,△CEF的面積不發(fā)生變化;理由如下:
作FH⊥CD于H,如圖4所示:
由(2)得:BM=CN=a,CM=DN=b,
∵AD∥CF,
∴△ADN∽△FCN,
∴,
∵CE∥AB,
∴∠FCH=∠B=60°,△CEM∽△BAM,
∴,
∴,
∴CF×CE=AD×AB=3×3=9,
∵CH=CF×sin∠FCH=CF×sin60°=CF,
△CEF的面積=CE×FH=CE×CF=×9×=,∴△CEF的面積是定值,不發(fā)生變化.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,曲線AB是拋物線的一部分(其中A是拋物線與y軸的交點,B是頂點),曲線BC是雙曲線的一部分.曲線AB與BC組成圖形W由點C開始不斷重復圖形W形成一組“波浪線”.若點,在該“波浪線”上,則m的值為________,n的最大值為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖a,已知拋物線y=-x2+bx+c經(jīng)過點A(4,0) 、C(0,2),與x軸的另一個交點為B.
(1)求出拋物線的解析式.
(2)如圖b,將△ABC繞AB的中點M旋轉180°得到△BAC′,試判斷四邊形BC′AC的形狀.并證明你的結論.
(3)如圖a,在拋物線上是否存在點D,使得以A、B、D三點為頂點的三角形與△ABC全等?若存在,請直接寫出點D的坐標;若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象交x軸于(-1,0)點,則下列結論中正確的是( )
A.c<0B.a-b+c<0C.b2<4acD.2a+b=0
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】函數(shù)y=kx,y=,y=的圖象如圖所示,下列判斷正確的有_____.(填序號)①k,a,b都是正數(shù);②函數(shù)y=與y=的圖象會出現(xiàn)四個交點;③A,D兩點關于原點對稱;④若B是OA的中點,則a=4b.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是一個可以自由轉動的轉盤,轉盤被分成面積相等的三個扇形,每個扇形上分別標上,1,-1三個數(shù)字.小明轉動轉盤,小亮猜結果,如果轉盤停止后指針指向的結果與小亮所猜的結果相同,則小亮獲勝,否則小明獲勝.
(1)如果小時轉動轉盤一次,小亮猜的結果是“正數(shù)”,那么小亮獲勝的概率是 .
(2)如果小明連續(xù)轉動轉盤兩次,小亮猜兩次的結果都是“正數(shù)”,請用畫樹狀圖或列表法求出小亮獲勝的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)的自變量x與函數(shù)值y的部分對應值如下表:
x | … | -2 | -1 | 0 | 1 | 2 | … |
y=ax2+bx+c | … | t | m | -2 | -2 | n | … |
根據(jù)以上列表,回答下列問題:
(1)直接寫出c的值和該二次函數(shù)圖象的對稱軸;
(2)寫出關于x的一元二次方程ax2+bx+c=t的根;
(3)若m=-1,求此二次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c與兩坐標軸分別交于點A、B、C,直線y=﹣x+4經(jīng)過點B,與y軸交點為D,M(3,﹣4)是拋物線的頂點.
(1)求拋物線的解析式.
(2)已知點N在對稱軸上,且AN+DN的值最。簏cN的坐標.
(3)在(2)的條件下,若點E與點C關于對稱軸對稱,請你畫出△EMN并求它的面積.
(4)在(2)的條件下,在坐標平面內是否存在點P,使以A、B、N、P為頂點的四邊形是平行四邊形?若存在,請直接寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】矩形ABCD中,AB=2,AD=4,將矩形ABCD繞點C順時針旋轉至矩形EGCF(其中E、G、F分別與A、B、D對應).
(1)如圖1,當點G落在AD邊上時,直接寫出AG的長為 ;
(2)如圖2,當點G落在線段AE上時,AD與CG交于點H,求GH的長;
(3)如圖3,記O為矩形ABCD對角線的交點,S為△OGE的面積,求S的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com