【題目】直棱柱的側(cè)面都是(
A.正方形
B.長方形
C.五邊形
D.菱形

【答案】B
【解析】解:直棱柱不管從哪個側(cè)面看都是長方形.

故選B.

根據(jù)棱柱由上下兩個底面以及側(cè)面組成;上下兩個底面可以是全等的多邊形,側(cè)面是四邊形;棱長與底面垂直的棱柱叫直棱柱,不垂直的棱柱叫斜棱柱作答.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,已知:在ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m,CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.

(2)如圖2,將(1)中的條件改為:在ABC中,AB=AC,D、A、E三點都在直線m上,并且∠BDA=AEC=BAC=α,其中α為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?若成立,請給出證明;若不成立,請說明理由.

(3)拓展與應(yīng)用:如圖3,D、ED、A、E三點所在直線m上的兩動點(D、A、E三點

互不重合),點F為∠BAC平分線上的一點,且ABFACF均為等邊三角形,連接BD、CE,若∠BDA=AEC=BAC,試判斷DEF的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABx軸于點Aa,0),y軸于點B0,b),a、b滿足

1A的坐標(biāo)為 B的坐標(biāo)為 ;

2如圖1若點C的坐標(biāo)為(-3,-2),BEAC于點EODOCBE延長線于D,試求點D的坐標(biāo)

3如圖2,MN分別為OA、OB邊上的點,OM=ON,OPANAB于點P過點P PGBM,AN的延長線于點G請寫出線段AGOPPG之間的數(shù)量關(guān)系,并證明你的結(jié)論

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=kx+b的圖象經(jīng)過點(﹣1,5),且與正比例函數(shù)y=x的圖象相交于點(2a).

1)求實數(shù)a的值及一次函數(shù)的解析式;

2)求這兩個函數(shù)圖象與x軸所圍成的三角形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標(biāo)系后,ABC的頂點均在格點上,點B的坐標(biāo)為(1,0)

(1)畫出ABC關(guān)于x軸對稱的A1B1C1;

(2)畫出將ABC繞原點O按逆時針旋轉(zhuǎn)90°所得的A2B2C2;

(3)A1B1C1A2B2C2成軸對稱圖形嗎?若成軸對稱圖形,畫出所有的對稱軸;

(4)A1B1C1A2B2C2成中心對稱圖形嗎?若成中心對稱圖形,寫出所有的對稱中心的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x2+ax+4是完全平方式,則a=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在菱形ABCD中,點E,O,F(xiàn)分別為AB,AC,AD的中點,連接CE,CF,OE,OF.

(1)求證:△BCE≌△DCF;

(2)當(dāng)AB與BC滿足什么關(guān)系時,四邊形AEOF是正方形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值:(x+5)(x﹣1)+(x﹣2)2 , 其中x=﹣2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A,B兩點的坐標(biāo)分別為(2,0),(0,10),MAOB外接圓⊙C上的一點,且∠AOM=30°,則點M的坐標(biāo)為______

查看答案和解析>>

同步練習(xí)冊答案