【題目】如圖,在四邊形ABCD中,ADBC,AD12cm,BC15cm,點P自點AD1cm/s的速度運動,到D點即停止.點Q自點CB2cm/s的速度運動,到B點即停止,點P,Q同時出發(fā),設運動時間為ts).

1)用含t的代數(shù)式表示:

AP   ;DP   ;BQ   ;CQ   

2)當t為何值時,四邊形APQB是平行四邊形?

3)當t為何值時,四邊形PDCQ是平行四邊形?

【答案】(1)t12t,152t,2t2t5s時四邊形APQB是平行四邊形(3)當t4s時,四邊形PDCQ是平行四邊形

【解析】

1)根據(jù)速度、路程以及時間的關系和線段之間的數(shù)量關系,即可求出AP,DP,BQ,CQ的長;

2)當APBQ時,四邊形APQB是平行四邊形,建立關于t的一元一次方程方程,解方程求出符合題意的t值即可;

3)當PDCQ時,四邊形PDCQ是平行四邊形;建立關于t的一元一次方程方程,解方程求出符合題意的t值即可.

解:(1AP=t,DP =12t,BQ=152t,CQ=2t

2)根據(jù)題意有APt,CQ2tPD12t,BQ152t

∵AD∥BC

APBQ時,四邊形APQB是平行四邊形,

∴t152t,解得t5,

∴t5s時四邊形APQB是平行四邊形;

3)由APtcmCQ2tcm,

∵AD12cm,BC15cm,

∴PDADAP12t

如圖1,∵AD∥BC,

PDQC時,四邊形PDCQ是平行四邊形.

即:12t2t,

解得t4s

t4s時,四邊形PDCQ是平行四邊形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠BAC和∠ABC的平分線相交于點O,過點OEF∥ABBCF,交ACE,過點OOD⊥BCD,下列四個結(jié)論:

①∠AOB=90°+C;AE+BF=EF③當∠C=90°時,E,F分別是AC,BC的中點;④若OD=aCE+CF=2b,則SCEF=ab其中正確的是( 。

A. ①② B. ③④ C. ①②④ D. ①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:如果一個分式能化成一個整式與一個分子為常數(shù)的分式的和的形式,則稱這個分式為和諧分式.如: ,則和諧分式

(1)下列分式中,屬于和諧分式的是_____(填序號)

;②;③;④;

(2)和諧分式化成一個整式與一個分子為常數(shù)的分式的和的形式為:_______(要寫出變形過程)

(3)應用:先化簡,并求x取什么整數(shù)時,該式的值為整數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探究:如圖,在△ABC 中,∠BAC=90°,AB=AC,直線 m 經(jīng)過點 A,BD⊥m 于點 D,CE⊥m 于點 E,求證:△ABD≌△CAE.

應用:如圖,在△ABC 中,AB=AC,D、A、E 三點都在直線 m 上,并且有∠BDA=∠AEC=∠BAC,求證:DE=BD+CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖AOB=90°,OA=90cm,OB=30cm一機器人在點B處看見一個小球從點A出發(fā)沿著AO方向勻速滾向點O,機器人立即從點B出發(fā),沿直線勻速前進攔截小球,恰好在點C處截住了小球如果小球滾動的速度與機器人行走的速度相等那么機器人行走的路程BC是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,∠BAD=120°,B=D=90°,在BC,CD上分別找一點M,N,使AMN周長最小時,則∠AMN+ANM的度數(shù)是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】△ABC中,AB=AC,D是線段BC的延長線上一點,以AD為一邊在AD的右側(cè)作△ADE,使AE=AD,∠DAE=∠BAC,連接CE.

(1)如圖1,點D在線段BC的延長線上移動,若∠BAC=30°,則∠DCE=   

(2)設∠BAC=α,∠DCE=β:

如圖1,當點D在線段BC的延長線上移動時,αβ之間有什么數(shù)量關系?請說明理由;

當點D在直線BC上(不與B、C重合)移動時,αβ之間有什么數(shù)量關系?請直接寫出你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一枚棋子放在⊙O上的點A處,通過摸球來確定該棋子的走法.
其規(guī)則如下:在一只不透明的口袋中,裝有3個標號分別為1,2,3的相同小球.充分攪勻后從中隨機摸出1個,記下標號后放回袋中并攪勻,再從中隨機摸出1個,若摸出的兩個小球標號之積是m,就沿著圓周按逆時針方向走m步(例如:m=1,則A﹣B;若m=6,則A﹣B﹣C﹣D﹣A﹣B﹣C).用列表或樹狀圖,分別求出棋子走到A、B、C、D點的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD在平面直角坐標系中,AD=6,若OA、OB的長是關于 的一元二次方程 的兩個根,且OA>OB

(1)求cos∠ABC的值。
(2)若E為x軸上的點,且 ,求出點E的坐標,并判斷△AOE與△DAO是否相似?請說明理由

查看答案和解析>>

同步練習冊答案