【題目】完成下面的證明,如圖點D,E,F分別是三角形ABC的邊BC,CA,AB上的點,DE∥BA,DF∥CA.求證:∠FDE=∠A.
證明:∵DE∥AB,
∴∠FDE=∠ ( )
∵DF∥CA,
∴∠A=∠ ( )
∴∠FDE=∠A( )
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形ABCD是由六個正方形組成的完美長方形,中間最小正方形的面積是1,最大正方形的邊長為x.
(1)用x的代數(shù)式表示長方形ABCD的長是______或______、寬是______;
(2)求長方形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平行四邊形ABCD與平行四邊形DCFE的周長相等,且BAD=60°,CFE=110°,則下列結(jié)論:①四邊形ABFE為平行四邊形;②ADE是等腰三角形;③平行四邊形ABCD與平行四邊形DCFE全等;④DAE=25°.其中正確的結(jié)論是.__________(填正確結(jié)論的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,△ABC中,AC=BC,以BC為直徑的⊙O交AB于E,過點E作EG⊥AC于G,交BC的延長線于F.
(1)求證:AE=BE;
(2)求證:FE是⊙O的切線;
(3)若FE=4,F(xiàn)C=2,求⊙O的半徑及CG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直角三角板和直角三角板,,,
.
(1)如圖1,將頂點和頂點重合,保持三角板不動,將三角板繞點旋轉(zhuǎn).當(dāng)平分時,求的度數(shù);
(2)在(1)的條件下,繼續(xù)旋轉(zhuǎn)三角板,猜想與有怎樣的數(shù)量關(guān)系?并利用圖2所給的情形說明理由;
(3)如圖3,將頂點和頂點重合,保持三角板不動,將三角板繞點旋轉(zhuǎn).當(dāng)落在內(nèi)部時,直接寫出與的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的一塊地,已知∠ADC=90°,AD=12m,CD=9m,AB=25m,BC=20m,則這塊地的面積為( )平方米.
A. 96 B. 204 C. 196 D. 304
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,E、F是平行四邊行ABCD的對角線AC上的 兩點,AE=CF。
求證:(1)△ADF≌△CBE
(2)EB∥DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國家規(guī)定,中小學(xué)生每天在校體育活動時間不低于1小時,為了解這項政策的落實情況,有關(guān)部門就“你某天在校體育活動時間是多少”的問題,在某校隨機抽查了部分學(xué)生,再根據(jù)活動時間t(小時)進(jìn)行分組(A組:t<0.5,B組:0.5≤t<1,C組:1≤t<1.5,D組:t≥1.5),繪制成如下兩幅不完整統(tǒng)計圖,請根據(jù)圖中信息回答問題:
(1)此次抽查的學(xué)生數(shù)為 人;
(2)補全條形統(tǒng)計圖;
(3)從抽查的學(xué)生中隨機詢問一名學(xué)生,該生當(dāng)天在校體育活動時間低于1小時的概率是 ;
(4)若當(dāng)天在校學(xué)生數(shù)為1200人,請估計在當(dāng)天達(dá)到國家規(guī)定體育活動時間的學(xué)生有 人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是( )
A. 當(dāng)AB=BC時,它是菱形 B. 當(dāng)AC⊥BD時,它是菱形
C. 當(dāng)∠ABC=90°時,它是矩形 D. 當(dāng)AC=BD時,它是正方形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com