精英家教網(wǎng)如圖,已知Rt△ABC的兩條直角邊AC、BC的長分別為3cm、4cm,以AC為直徑的圓與AB交于點D,則
BDDA
=
 
分析:連CD,先在Rt△ABC中利用勾股定理求出AB=5cm,再分別利用Rt△ADC∽Rt△ACB和Rt△BDC∽Rt△BCA,求出AD和BD,然后得到它們的比.
解答:精英家教網(wǎng)解:連CD,如圖,
在Rt△ABC中,因為AC、BC的長分別為3cm、4cm,所以AB=5cm,
∵AC為直徑,
∴∠ADC=90°,
∵∠A公共,
∴Rt△ADC∽Rt△ACB,
AD
AC
=
AC
AB
,即
AD
3
=
3
5
,
∴AD=
9
5
,
同理可得Rt△BDC∽Rt△BCA,
BD
BC
=
BC
AB
,即
BD
4
=
4
5
,
∴BD=
16
5
,
BD
DA
=
16
9

故答案為
16
9
點評:本題考查了圓周角定理.在同圓或等圓中,同弧和等弧所對的圓周角相等,一條弧所對的圓周角是它所對的圓心角的一半.同時考查了圓周角的推論:直徑所對的圓周角為90度.也考查了勾股定理以及三角形相似的判定與性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖,已知Rt△ABC,AB=AC,∠ABC的平分線BD交AC于點D,BD的垂直平分線分別交AB,BC于點E、F,CD=CG.
(1)請以圖中的點為頂點(不增加其他的點)分別構(gòu)造兩個菱形和兩個等腰梯形.那么,構(gòu)成菱形的四個頂點是
B,E,D,F(xiàn)
E,D,C,G
;構(gòu)成等腰梯形的四個頂點是
B,E,D,C
E,D,G,F(xiàn)
;
(2)請你各選擇其中一個圖形加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知Rt△ABC是⊙O的內(nèi)接三角形,∠BAC=90°,AH⊥BC,垂足為D,過點B作弦BF交AD于點精英家教網(wǎng)E,交⊙O于點F,且AE=BE.
(1)求證:
AB
=
AF

(2)若BE•EF=32,AD=6,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、如圖,已知Rt△ABC中,∠BAC=90°,AB=AC,P是BC延長線上一點,PE⊥AB交BA延長線于E,PF⊥AC交AC延長線于F,D為BC中點,連接DE,DF.求證:DE=DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知Rt△ABC中,∠CAB=30°,BC=5.過點A做AE⊥AB,且AE=15,連接BE交AC于點P.
(1)求PA的長;
(2)以點A為圓心,AP為半徑作⊙A,試判斷BE與⊙A是否相切,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知Rt△ABC中∠A=90°,AB=3,AC=4.將其沿邊AB向右平移2個單位得到△FGE,則四邊形ACEG的面積為
14
14

查看答案和解析>>

同步練習(xí)冊答案