【題目】如圖,拋物線(xiàn)y=ax2+bx+c的圖象,經(jīng)過(guò)點(diǎn)A(1,0),B(3,0),C(0,3)三點(diǎn),過(guò)點(diǎn)C,D(﹣3,0)的直線(xiàn)與拋物線(xiàn)的另一交點(diǎn)為E.
(1)請(qǐng)你直接寫(xiě)出:
①拋物線(xiàn)的解析式 ;
②直線(xiàn)CD的解析式 ;
③點(diǎn)E的坐標(biāo)( , );
(2)如圖1,若點(diǎn)P是x軸上一動(dòng)點(diǎn),連接PC,PE,則當(dāng)點(diǎn)P位于何處時(shí),可使得∠CPE=45°,請(qǐng)你求出此時(shí)點(diǎn)P的坐標(biāo);
(3)如圖2,若點(diǎn)Q是拋物線(xiàn)上一動(dòng)點(diǎn),作QH⊥x軸于H,連接QA,QB,當(dāng)QB平分∠AQH時(shí),請(qǐng)你直接寫(xiě)出此時(shí)點(diǎn)Q的坐標(biāo).
【答案】(1)①y=x2﹣4x+3,②y=x+3,③(5,8);(2)P1(1,0),P2(9,0);(3)Q(3+,3+2).
【解析】
(1)①假設(shè)拋物線(xiàn)的解析式為y=a(x﹣1)(x﹣3),將A,B代入,即可求出拋物線(xiàn)的解析式;
②設(shè)直線(xiàn)CD的解析式為y=kx+b,將C,D代入可得直線(xiàn)CD的解析式;
③聯(lián)立兩個(gè)解析式可得E點(diǎn)坐標(biāo);
(2)過(guò)點(diǎn)E作EH⊥x軸于H,由已知可推出CD=,DE=,EC=,△ECP∽△EPD,由此可得PE2,根據(jù)勾股定理可得PH,由此即可求出點(diǎn)P的坐標(biāo);
(3)延長(zhǎng)QH到M,使得HM=1,連接AM,BM,延長(zhǎng)QB交AM于N,設(shè)Q(t,t2﹣4t+3),由題意得點(diǎn)Q只能在點(diǎn)B的右側(cè)的拋物線(xiàn)上,則QH=t2﹣4t+3,BH=t﹣3,AH=t﹣1,由此可推出△QHB∽△AHM,據(jù)此可得QN⊥AM,當(dāng)BM=AB=2時(shí),QN垂直平分線(xiàn)段AM,此時(shí)QB平分∠AQH,根據(jù)勾股定理可得t值,即可推出點(diǎn)Q坐標(biāo).
(1)①∵拋物線(xiàn)經(jīng)過(guò)A(1,0),B(3,0),
∴可以假設(shè)拋物線(xiàn)的解析式為y=a(x﹣1)(x﹣3),
把C(0,3)代入得到a=1,
∴拋物線(xiàn)的解析式為y=x2﹣4x+3;
②設(shè)直線(xiàn)CD的解析式為y=kx+b,則有,
解得,
∴直線(xiàn)CD的解析式為y=x+3;
③由,解得或,
∴E(5,8),
故答案為:y=x2﹣4x+3,y=x+3,(5,8);
(2)如圖1中,過(guò)點(diǎn)E作EH⊥x軸于H,
∵C(0,3),D(﹣3,0),E(5,8),
∴OC=OD=3,EH=8,
∴∠PDE=45°,CD=,DE=,EC=,
當(dāng)∠CPE=45°時(shí),∵∠PDE=∠EPC,∠CEP=∠PED,
∴△ECP∽△EPD,
∴,
∴PE2=ECED=80,
在Rt△EHP中,PH===4,
∴把點(diǎn)H向左或向右平移4個(gè)單位得到點(diǎn)P,
∴P1(1,0),P2(9,0);
(3)延長(zhǎng)QH到M,使得HM=1,連接AM,BM,延長(zhǎng)QB交AM于N,
設(shè)Q(t,t2﹣4t+3),由題意得點(diǎn)Q只能在點(diǎn)B的右側(cè)的拋物線(xiàn)上,則QH=t2﹣4t+3,BH=t﹣3,AH=t﹣1,
∴==t﹣3=,
∵∠QHB=∠AHM=90°,
∴△QHB∽△AHM,
∴∠BQH=∠HAM,
∵∠BQH+∠QBH=90°,∠QBH=∠ABN,
∴∠HAM+∠ABN=90°,
∴∠ANB=90°,
∴QN⊥AM,
∴當(dāng)BM=AB=2時(shí),QN垂直平分線(xiàn)段AM,此時(shí)QB平分∠AQH,
在Rt△BHM中,BH===,
∴t=3+,
∴Q(3+,3+2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】水果店購(gòu)進(jìn)某種水果的成本為10元/千克,經(jīng)市場(chǎng)調(diào)研,獲得銷(xiāo)售單價(jià)p(元/千克)與銷(xiāo)售時(shí)間t(1≤t≤15,t為整數(shù))(天)之間的部分?jǐn)?shù)據(jù)如下表:
銷(xiāo)售時(shí)間t(1≤t≤15,t為整數(shù))(天) | 1 | 4 | 5 | 8 | 12 |
銷(xiāo)售單價(jià)p(元/千克) | 20.25 | 21 | 21.25 | 22 | 23 |
已知p與t之間的變化規(guī)律符合一次函數(shù)關(guān)系.
(1)試求p關(guān)于t的函數(shù)表達(dá)式;
(2)若該水果的日銷(xiāo)量y(千克)與銷(xiāo)售時(shí)間t(天)的關(guān)系滿(mǎn)足一次函數(shù)y=-2t+120(1≤t≤15,t為整數(shù)).
① 求銷(xiāo)售過(guò)程中最大日銷(xiāo)售利潤(rùn)為多少?
② 在實(shí)際銷(xiāo)售的前12天中,公司決定每銷(xiāo)售1千克水果就捐贈(zèng)n元利潤(rùn)(n<3)給“精準(zhǔn)扶貧”對(duì)象.現(xiàn)發(fā)現(xiàn):在前12天中,每天扣除捐贈(zèng)后的日銷(xiāo)售利潤(rùn)隨時(shí)間t的增大而增大,求n的取值范圍
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A(4,0),點(diǎn)B(0,4),C是AB中點(diǎn),連接OC,將△AOC繞點(diǎn)A順時(shí)針旋轉(zhuǎn),得到△AMN,記旋轉(zhuǎn)角為α,點(diǎn)O,C的對(duì)應(yīng)點(diǎn)分別是M,N.連接BM,P是BM中點(diǎn),連接OP,PN.
(Ⅰ)如圖①.當(dāng)α=45°時(shí),求點(diǎn)M的坐標(biāo);
(Ⅱ)如圖②,當(dāng)α=180°時(shí),求證:OP=PN且OP⊥PN;
(Ⅲ)當(dāng)△AOC旋轉(zhuǎn)至點(diǎn)B,M,N共線(xiàn)時(shí),求點(diǎn)M的坐標(biāo)(直接寫(xiě)出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC和△DEF是兩個(gè)全等的等腰直角三角形,∠BAC=∠EDF=90°,△EDF的頂點(diǎn)E與△ABC的斜邊BC的中點(diǎn)重合,將△DEF繞點(diǎn)E旋轉(zhuǎn),旋轉(zhuǎn)過(guò)程中,線(xiàn)段DE與線(xiàn)段AB相交于點(diǎn)P,線(xiàn)段EF與射線(xiàn)CA相交于點(diǎn)Q.
(1)如圖①,當(dāng)點(diǎn)Q在線(xiàn)段AC上,且AP=AQ時(shí),求證:△BPE≌△CQE;
(2)如圖②,當(dāng)點(diǎn)Q在線(xiàn)段CA的延長(zhǎng)線(xiàn)上時(shí),求證:△BPE∽△CEQ;
(3)在(2)的條件下,BP=2,CQ=9,則BC的長(zhǎng)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,函數(shù)y=x(x≥0)的圖象與反比例函數(shù)y=的圖象交于點(diǎn)A,若點(diǎn)A繞點(diǎn)B(,0)順時(shí)針旋轉(zhuǎn)90°后,得到的點(diǎn)A'仍在y=的圖象上,則點(diǎn)A的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小林家的洗手臺(tái)面上有一瓶洗手液(如圖1),當(dāng)手按住頂部A下壓時(shí)(如圖2),洗手液瞬間從噴口B流出,已知瓶子上部分的和的圓心分別為D,C,下部分的視圖是矩形CGHD,GH=10cm,GC=8cm,點(diǎn)E到臺(tái)面GH的距離為14cm,點(diǎn)B距臺(tái)面GH的距離為16cm,且B,D,H三點(diǎn)共線(xiàn).如果從噴口B流出的洗手液路線(xiàn)呈拋物線(xiàn)形,且該路線(xiàn)所在的拋物線(xiàn)經(jīng)過(guò)C.E兩點(diǎn),接洗手液時(shí),當(dāng)手心O距DH的水平距離為2cm時(shí),手心O距水平臺(tái)面GH的高度為_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:平行四邊形ABCD中,E為AB中點(diǎn),AF=FD,連E、F交AC于G,則AG:GC=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一列有理數(shù)﹣1,2,﹣3,4,﹣5,6,……,如圖所示有序排列,根據(jù)圖中的排列規(guī)律可知,“峰1”中峰頂?shù)奈恢茫?/span>C的位置)是有理數(shù)4,那么,“峰5”中C的位置是有理數(shù)___,﹣2019應(yīng)排在A、B、C、D、E中的___位置.其中兩個(gè)填空依次為( 。
A. 24,C B. 24.A C. 25,B D. ﹣25,E
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形中,,,以為坐標(biāo)原點(diǎn),以所在的直線(xiàn)為軸建立平面直角坐標(biāo)系,如圖.按以下步驟作圖:①分別以點(diǎn),為圓心,以大于的長(zhǎng)為半徑作弧,兩弧相交于點(diǎn),;②作直線(xiàn)交于點(diǎn).則點(diǎn)的坐標(biāo)為( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com