【題目】如圖1,點O為直線AB上一點,過點O作射線OC,使∠AOC=60°,將一把直角三角尺的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)將圖1中的三角尺繞點O逆時針旋轉至圖2,使點N在OC的反向延長線上,請直接寫出圖中∠MOB的度數,∠MOB= .
(2)將圖1中的三角尺繞點O逆時針旋轉至圖3,使一邊OM在∠BOC的內部,且恰好平分∠BOC,求∠CON的度數.
(3)將圖1中的三角尺繞點O順時針旋轉至圖4,使ON在∠AOC的內部,請?zhí)骄俊?/span>AOM與∠NOC之間的數量關系,并說明理由.
(4)將圖1中的三角尺繞點O以每秒鐘15°的轉速順時針旋轉一周,當時間t為 秒鐘時,ON所在的直線恰好平分∠AOC.(直接寫答案)
【答案】(1)30°;(2)150°;(3)30°;(4)8或20秒.
【解析】試題分析:(1)根據對頂角求出∠BON,代入∠BOM=∠MON-∠BON求出即可;
(2)求出∠BOC=120°,根據角平分線定義請求出∠COM=∠BOM=60°,代入∠CON=∠MON+∠COM求出即可;
(3)用∠AOM和∠CON表示出∠AON,然后列出方程整理即可得解.
(4))分兩種情況根據旋轉的性質求出旋轉角,然后除以旋轉速度即可得解;
試題解析:(1)如圖2,∵∠AOC=60°,
∴∠BON=∠AOC=60°,
∵∠MON=90°,
∴∠BOM=∠MON-∠BON=30°;
(2)∵∠AOC=60°,
∴∠BOC=180°-∠AOC=120°,
∵OM平分∠BOC,
∴∠COM=∠BOM=60°,
∵∠MON=90°,
∴∠CON=∠MON+∠COM=90°+60°=150°;
(3)∠AOM-∠NOC=30°,
理由是:∵∠MON=90°,∠AOC=60°,
∴∠AON=90°-∠AOM,
∠AON=60°-∠NOC,
∴90°-∠AOM=60°-∠NOC,
∴∠AOM-∠NOC=30°,
故∠AOM與∠NOC之間的數量關系為:∠AOM-∠NOC=30°.
(4)直線ON恰好平分銳角∠AOC時,
旋轉角為90°+30°=120°或270°+30°=300°,
∵每秒順時針旋轉15°,
∴時間為8或20秒.
科目:初中數學 來源: 題型:
【題目】隨著“互聯網+”時代的到來,一種新型打車方式受到大眾歡迎.該打車方式的計價規(guī)則如圖①所示,若車輛以平均速度vkm/h行駛了skm,則打車費用為(ps+60q·)元(不足9元按9元計價).小明某天用該打車方式出行,按上述計價規(guī)則,其打車費用y(元)與行駛里程x(km)的函數關系也可由如圖②表示.
(1)當x≥6時,求y與x的函數關系式.
(2)若p=1,q=0.5,求該車行駛的平均速度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,對角線AC與BD相交于點O,不能判斷四邊形ABCD是平行四邊形的是( )
A.AB∥DC,AD=BC
B.AB∥DC,AD∥BC
C.AB=DC,AD=BC
D.OA=OC,OB=OD
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在體育課上,九年級2名學生各練習10次立定跳遠,要判斷哪一名學生的成績比較穩(wěn)定,通常需要比較這2名學生立定跳遠成績的( )
A.方差B.平均數C.頻率分布D.眾數
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列事件中,為必然事件的是( )
A.太陽從東方升起B.發(fā)射一枚導彈,未擊中目標
C.購買一張彩票,中獎D.隨機翻到書本某頁,頁碼恰好是奇數
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,∠ABC=∠ACB,AD、BD、CD分別平分△ABC的外角∠EAC、內角∠ABC、外角∠ACF.以下結論:① AD∥BC;② ∠ACB=2∠ADB;③ ∠ADC=90°-∠ABD;④ BD平分∠ADC;⑤ 2∠BDC=∠BAC.其中正確的結論有 ( 。
A. ①②④ B. ①③④⑤ C. ①②③⑤ D. ①②③④⑤
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com