【題目】如圖,在△ABC中,AB=AC,以AC為直徑的⊙OBC于點D,交AB于點E,過點DDFAB,垂足為F,連接DE.

(1)求證:直線DF與⊙O相切;

(2)求證:BF=EF;

【答案】見解析

【解析】分析:

(1)連接OD,由已知易得∠B=∠C,∠C=∠ODC,從而可得∠B=∠ODC,由此可得AB∥OD,結(jié)合DF⊥AB即可得到OD⊥DF,從而可得DF⊙O相切

(2)連接AD,由已知易得BD=CD,∠BAD=∠CAD,由此可得DE=DC,從而可得DE=BD,結(jié)合DF⊥AB即可得到BF=EF.

詳解

(1)連結(jié)OD,

∵AB=AC,

∴∠B=∠C,

∵OC=OD,

∴∠ODC=∠C,

∴∠ODC=∠B,

∴OD∥AB,

∵DF⊥AB,

∴DF⊥OD,

直線DF⊙O相切;

(2)連接AD.

∵AC⊙O的直徑,

∴AD⊥BC,又AB=AC,

∴BD=DC,∠BAD=∠CAD,

∴DE=DC,

∴DE=DB,又DF⊥AB,

∴BF=EF.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在梯形ABCD中,點P從點A向點D運動,點Q從點C向點B運動.已知點P的運動速度為1cm/s,點Q的運動速度為2cm/s,AD=4cm,BC=8cm,運動時間為t.當t=_____S,四邊形ABQP是平行四邊形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖某學校從教學樓到圖書館總有少數(shù)同學不走人行道,而橫穿草坪.

1)試用所學的知識來說明少數(shù)學生這樣走的理由;

2)請問學生這樣走行嗎?如不行請你在草坪上豎起一個牌子,寫上一句話來警示學生應該怎樣做.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】感知:如圖①,ABC是等腰直角三角形,∠ACB=90°,正方形CDEF的頂點DF分別在邊ACBC上,易證:AD=BF(不需要證明);

探究:將圖①的正方形CDEF繞點C順時針旋轉(zhuǎn)αα90°),連接AD、BF,其他條件不變,如圖②,求證:AD=BF;

應用:若α=45°CD=,BE=1,如圖③,則BF=   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一些半徑相同的小圓按如圖所示的規(guī)律擺放:第1個圖形有6個小圓,第2個圖形有10個小圓,第3個圖形有16個小圓,第4圖形有24個小圓,,依次規(guī)律,第( 。﹤圖形有76個小圓.

A. 8 B. 9 C. 10 D. 11

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】是長方形紙片的四個頂點,點分別是邊上的三點,連結(jié)

1)將長方形紙片按圖①所示的方式折疊,為折痕,點折疊后的對應點分別為,點上,則的度數(shù)為

2)將長方形紙片按圖②所示的方式折疊,為折痕,點折疊后的對應點分別為, , 的度數(shù);

3)將長方形紙片按圖③所示的方式折疊,為折痕,點折疊后的對應點分別為,若,求的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在等腰RtABC中,CA=BA,CAB=90°,點MAB上一點,

(1)點NBC上一點,滿足∠CNM=ANB.

①如圖1,求證:;②如圖2,若點MAB的中點,連接CM,求的值;

(2)如圖3,若AM=1,BM=2,點P為射線CA(除點C外)上一個動點,直線PM交射線CB于點D,猜測△CPD面積是否有最小值,若有,請求出最小值:若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在等腰RtABC中,D為斜邊AB的中點,點EAC上,且∠EDC=72°,點FAB上,滿足DE=DF,則∠CEF的度數(shù)為_______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某社區(qū)為了解居民對居住環(huán)境的滿意度情況(滿意度分為四個等級:、非常滿意:、滿意;、基本滿息;、不滿意),在某小區(qū)隨機抽樣調(diào)查了若干戶居民,并根據(jù)調(diào)查數(shù)據(jù)繪制成下面兩個不完整的統(tǒng)計圖.

請你結(jié)合圖中提供的信息解答下列問題.

1)這次被調(diào)查的居民共有______戶,并將條形統(tǒng)計圖補充完整.

2)請計算扇形統(tǒng)計圖中所在扇形的圓心角度數(shù).

3)若該小區(qū)有2500戶居民,請你估計這個小區(qū)大約有多少戶居民對居住環(huán)境的滿意度是非常滿意”.

查看答案和解析>>

同步練習冊答案