已知:如圖1,給出下列6個論斷,①AB是⊙O1的直徑;②EC是⊙O1的切線;③AC是⊙O2的直徑;④BC•EC=DE•BD;⑤DE∥BC;⑥D(zhuǎn)E•BC=2CE2
(1)將6個論斷中的3個作為題設,2個論斷作為結論,寫出一個真命題,并加以證明;
(2)如果AB不是⊙O2直徑(如圖2),你能否再從其余5個論斷中選取一個論斷作為題設,一個論斷作為結論,使其成為真命題(不要求證明)?若能,請寫出兩個;若不能,請你再添加一個條件,寫出兩個真命題.

解:連接AE,
∵AC為⊙O直徑
∴∠AEC=∠ADC=90°
∴△AEC≌△ADC
∴CD=CE,EF=DF=ED;
(1)∵EC為⊙O1切線
∴∠ECA=∠ABC
∵∠EDA+∠CAD=90°,∠ABC+∠CAD=90°
∴∠EDA=∠ABC
∴ED∥BC
故⑤DE∥BC成立
∵△CFD∽△BDC
=
又∵CD=CE,DF=ED
∴DE•BC=2CE2
故⑥D(zhuǎn)E•BC=2CE2,成立;

(2)能,
(Ⅰ)②EC是⊙O1的切線作條件,⑤DE∥BC作結論,
證明:
∵EC是⊙O1的切線
∴∠ECA=∠CBA
∵同弧所對的圓周角相等
∴∠ECA=∠ADE
∴∠CBA=∠ADE
∴DE∥BC;
(Ⅱ)①AB是⊙O1的直徑作為條件,⑥D(zhuǎn)E•BC=2CE2作為結論,
∵AC為⊙O2直徑
∴△CFD∽△BDC
=
又∵CD=CE,DF=ED
∴DE•BC=2CE2
分析:(1)把①AB是⊙O1的直徑;②EC是⊙O1的切線;③AC是⊙O2的直徑作為條件,把⑤DE∥BC,⑥D(zhuǎn)E•BC=2CE2作為結論;
(2)從條件中選一個,根據(jù)題意進行推理,觀察能得到什么結論,再根據(jù)余下的條件進行證明.
點評:此題是一道條件、過程和結論都開放的題目,考查了同學們的發(fā)散思維能力,需要從條件中找出符合題意的條件進行組合,并進行嚴格證明.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知:如圖①,△ABC為邊長為2的等邊三角形,D、E、F分別為AB、AC、BC中點,連接DE、DF、EF.將△BDF向右平移,使點B與點C重合;將△ADE向下平移,使點A與點C重合,如圖②.
(1)設△ADE、△BDF、△EFC的面積分別為 S1、S2、S3,則S1+S2+S3
3
(用“<、=、>”填空)精英家教網(wǎng)
精英家教網(wǎng)
(2)已知:如圖③,∠AOB=∠COD=∠EOF=60°,AD=CF=BE=2,設△ABO、△FEO、△CDO的面積分別為S1、S2、S3;問:上述結論是否成立?若成立,請給出證明;若不成立,請說明理由.(可利用圖④進行探究)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,拋物線y=
1
3
x2-bx-3與x軸交于A、B兩點,與y軸交于C點,線段AB的垂精英家教網(wǎng)直平分線交拋物線于N點,且點N到x軸的距離為4,
(1)求拋物線的解析式;
(2)過A、B、C三點的⊙M交y軸于另一點D,連接DM并延長交⊙M于點E,過E點的⊙M的切線分別交x軸,y軸于點F、G,求直線FG的解析式;
(3)在(2)的條件下,設P為弧CBD上的動點(P不與C、D重合),連接PA交y軸于點H,給出以下兩個結論:①AH•AP為定值;②
AH
AP
為定值,其中只有一個結論正確,請判斷正確的結論,并求出其值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

29、已知:如圖,AD=AE,∠ADC=∠AEB,BE與CD相交于O點.(1)在不添輔助線的情況下,請寫出由已知條件可得出的結論(例如,可得出△ABE≌△ACD,∠DOB=∠EOC,∠DOE=∠BOC等.你寫出的結論中不能含所舉之例,只要求寫出4個).①
AB=AC
;②
CD=BE
;③
∠ABC=∠ACB
;④
∠EBC=∠DCB

(2)就你寫出的其中一個結論給出證明.
已知:如圖AD=AE,∠ADC=∠AEB,BE與CD相交于O點.
求證:
AB=AC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•歷下區(qū)一模)已知:如圖1,在DE上取一點A,以AD、AE為正方形的一邊在同一側作正方形ABCD和正方形AEFG,連接DG、BE,則線段DG、BE之間滿足DG=BE且DG⊥BE;

根據(jù)所給圖形完成以下問題的探索、證明和計算:
(1)如圖2,將正方形AEFG繞A點順時針旋轉(zhuǎn)α度,即∠BAG=α (0°<α<180°),那么(1)中的結論是否仍成立?若不成立請說明理由,若成立請給出證明.
(2)設正方形ABCD、AEFG的邊長分別是3和2,線段BD、DE、EG、GB所圍成封閉圖形的面積為S.當α變化時,S是否有最大值?若有,求出S的最大值及相應的α值.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年湖北省武漢市中考數(shù)學模擬試卷(7)(解析版) 題型:解答題

已知:如圖,拋物線y=x2-bx-3與x軸交于A、B兩點,與y軸交于C點,線段AB的垂直平分線交拋物線于N點,且點N到x軸的距離為4,
(1)求拋物線的解析式;
(2)過A、B、C三點的⊙M交y軸于另一點D,連接DM并延長交⊙M于點E,過E點的⊙M的切線分別交x軸,y軸于點F、G,求直線FG的解析式;
(3)在(2)的條件下,設P為弧CBD上的動點(P不與C、D重合),連接PA交y軸于點H,給出以下兩個結論:①AH•AP為定值;②為定值,其中只有一個結論正確,請判斷正確的結論,并求出其值.

查看答案和解析>>

同步練習冊答案