【題目】已知:如圖,在□ABCD中,點G為對角線AC的中點,過點G的直線EF分別交邊AB、CD于點E、F,過點G的直線MN分別交邊AD、BC于點M、N,且∠AGE=∠CGN.
(1)求證:四邊形ENFM為平行四邊形;
(2)當四邊形ENFM為矩形時,求證:BE=BN.
【答案】(1)證明見解析;(2)證明見解析.
【解析】分析:
(1)由已知條件易得∠EAG=∠FCG,AG=GC結合∠AGE=∠FGC可得△EAG≌△FCG,從而可得△EAG≌△FCG,由此可得EG=FG,同理可得MG=NG,由此即可得到四邊形ENFM是平行四邊形;
(2)如下圖,由四邊形ENFM為矩形可得EG=NG,結合AG=CG,∠AGE=∠CGN可得△EAG≌△NCG,則∠BAC=∠ACB ,AE=CN,從而可得AB=CB,由此可得BE=BN.
詳解:
(1)∵四邊形ABCD為平行四四邊形邊形,
∴AB//CD.
∴∠EAG=∠FCG.
∵點G為對角線AC的中點,
∴AG=GC.
∵∠AGE=∠FGC,
∴△EAG≌△FCG.
∴EG=FG.
同理MG=NG.
∴四邊形ENFM為平行四邊形.
(2)∵四邊形ENFM為矩形,
∴EF=MN,且EG=,GN=,
∴EG=NG,
又∵AG=CG,∠AGE=∠CGN,
∴△EAG≌△NCG,
∴∠BAC=∠ACB ,AE=CN,
∴AB=BC,
∴AB-AE=CB-CN,
∴BE=BN.
科目:初中數學 來源: 題型:
【題目】二次函數y=x2+bx–1的圖象如圖,對稱軸為直線x=1,若關于x的一元二次方程x2–2x–1–t=0(t為實數)在–1<x<4的范圍內有實數解,則t的取值范圍是
A. t≥–2 B. –2≤t<7
C. –2≤t<2 D. 2<t<7
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為2的正方形ABCD中,P是BC邊上一動點(點P不與B、C重合),將△ABP沿直線AP翻折,點B落在點E處;在CD上有一點M,使得將△CMP沿直線MP翻折后,點C落在直線PE上的點F處,直線PE交CD于點N,連接MA、NA,則以下結論:①△CMP∽△BPA;②四邊形AMCB的面積最大值為2.5;③△ADN≌△AEN;④線段AM的最小值為2.5;⑤當P為BC中點時,AE為線段NP的中垂線.正確的有_____(只填序號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點D是∠AOB內一點,點E,F分別在OA,OB上,且OE<OF,DE=DF,∠OED+∠OFD=180°,
(1)請作出點D到OA,OB的距離,標明垂足;
(2)求證:OD平分∠AOB;
(3)若∠AOB=60°,OD=6,OE=4,求△ODE的面積。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某地民政局計劃將批物資運往災區(qū),在這批物資中,帳篷和食品共320件,帳篷比食品多80件.
(1)求帳篷和食品各多少件?
(2)現計劃租用甲、乙兩種貨車共8輛,一次性將這些物資全部運往災區(qū),已知甲型貨車最多可裝帳篷40件和食品10件;乙種貨車最多可裝帳篷和食品各20件,計算說明安排甲、乙兩種貨車有幾種方案?
(3)在(2)的條件下,甲種貨車每輛需付運費4000元,乙種貨車每輛需付運費3600元,民政局應選擇哪種運輸方案,才能使運輸費用最少?最少費用是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在ABCD中,AC、BD交于點O,過點O作直線EF、GH,分別交ABCD的四條邊于E、G、F、H四點,連接EG、GF、FH、HE.
(1)如圖①,四邊形EGFH的形狀是___;
(2)如圖②,當EF⊥GH時,四邊形EGFH的形狀是___;
(3)如圖③,在(2)的條件下,若AC=BD,四邊形EGFH的形狀是___;
(4)如圖④,在(3)的條件下,若AC⊥BD,四邊形EGFH的形狀是___.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,則四邊形ABCD的面積為( )
A. 15 B. 12.5 C. 14.5 D. 17
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標為(1,n),拋物線與x軸的一個交點在點(3,0)和(4,0)之間.則下列結論
①a-b+c>0;②3a+b=0;
③b2=4a(c-n);
④一元二次方程ax2+bx+c=n-1有兩個不相等的實數根.
其中正確結論的個數是( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com