已知拋物線經(jīng)過點,那么拋物線的解析式是_____________________。
代入
試題分析:由題意把代入拋物線即可求得結(jié)果.
由題意得,解得
則拋物線的解析式是.
點評:本題屬于基礎(chǔ)應(yīng)用題,只需學(xué)生熟練掌握待定系數(shù)法求函數(shù)關(guān)系式,即可完成.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,半徑為2的⊙C與軸的正半軸交于點A,與軸的正半軸交于點B,點C的坐標(biāo)為(1,0),若拋物線過A、B兩點。

(1)求拋物線的解析式;
(2)在拋物線上是否存在P,使得∠PBO=∠POB?若存在,求出點P的坐標(biāo);若不存在說明理由;
(3)若點M是拋物線(在第一象限內(nèi)的部分)上一點,△MAB的面積為S,求S的最大(。┲。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,二次函數(shù)的圖象與y軸交于點C(0,4),與x軸交于點A、B,點A的坐標(biāo)為(4,0).

(1)求該二次函數(shù)的關(guān)系式;
(2)寫出該二次函數(shù)的對稱軸和頂點坐標(biāo);
(3)點Q是線段AB上的動點,過點Q作QE∥AC,交BC于點E,連接CQ.當(dāng)△CQE的面積最大時,求點Q的坐標(biāo);
(4)若平行于x軸的動直線與該拋物線交于點P,與直線AC交于點F,點D的坐標(biāo)為(2,0).問:是否存在這樣的直線,使得△ODF是等腰三角形?若存在,請求出點P的坐標(biāo);若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,直角梯形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,OA=AB=2,OC=3,過點B作BD⊥BC,交OA于點D.將∠DBC繞點B按順時針方向旋轉(zhuǎn),角的兩邊分別交y軸的正半軸、x軸的正半軸于點E和F.

(1)求經(jīng)過A、B、C三點的拋物線的解析式;
(2)當(dāng)BE經(jīng)過(1)中拋物線的頂點時,求CF的長;
(3)在拋物線的對稱軸上取兩點P、Q(點Q在點P的上方),且PQ=1,要使四邊形BCPQ的周長最小,請直接寫出P點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,Rt△ABC中,AC=BC=8,∠ACB=90º,直角邊AC在x軸上,B點在第二象限,A(2,0),AB交y軸于E,將紙片過E點折疊使BE與EA所在直線重合,得到折痕EF(F在x軸上),再展開還原沿EF剪開得到四邊形BCFE,然后把四邊形BCFE從E點開始沿射線EA平移,至B點到達A點停止.設(shè)平移時間為t(s),移動速度為每秒1個單位長度,平移中四邊形B1C1F1E1與△AEF重疊的面積為S.

(1)求折痕EF的長;
(2)直接寫出S與t的函數(shù)關(guān)系式及自變量t的取 值范圍.
(3)若四邊形BCFE平移時,另有一動點H與四邊形BCFE同時出發(fā),以每秒個單位長度從點A沿射線AC運動,試求出當(dāng)t為何值時,△HE1E為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,梯形中,,,.動點從點出發(fā),以每秒個單位長度的速度在線段上運動;動點同時從點出發(fā),以每秒個單位長度的速度在線段上運動.以為邊作等邊△,與梯形在線段的同側(cè).設(shè)點、運動時間為,當(dāng)點到達點時,運動結(jié)束.

(1)當(dāng)?shù)冗叀?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823023703859477.png" style="vertical-align:middle;" />的邊恰好經(jīng)過點時,求運動時間的值;
(2)在整個運動過程中,設(shè)等邊△與梯形的重合部分面積為,請直接寫
之間的函數(shù)關(guān)系式和相應(yīng)的自變量的取值范圍;
(3)如圖,當(dāng)點到達點時,將等邊△繞點旋轉(zhuǎn)(),
直線分別與直線、直線交于點、.是否存在這樣的,使△為等腰三角形?
若存在,請求出此時線段的長度;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,甲、乙兩人進行羽毛球比賽,甲發(fā)出一顆十分關(guān)鍵的球,出手點為P,羽毛球距地面高度h(米)與其飛行的水平距離s(米)之間的關(guān)系式為.若球網(wǎng)AB距原點5米,乙(用線段CD表示)扣球的最大高度為2.25米,

(1)羽毛球的出手點高度為__________米;
(2)設(shè)乙的起跳點C的橫坐標(biāo)為m,若乙原地起跳,因球的高度高于乙扣球的最大高度而導(dǎo)致接失敗,則m取值范圍是__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

二次函數(shù)的最大值是          

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,拋物線y=ax2+bx+c交x軸于(,0)、(3,0)兩點,則下列判斷中,錯誤的是
A.圖象的對稱軸是直線x=1
B.當(dāng)x>1時,y隨x的增大而減小
C.一元二次方程ax2+bx+c=0的兩個根是-1和3
D.當(dāng)-1<x<3時,y<0

查看答案和解析>>

同步練習(xí)冊答案