【題目】某天早晨,王老師從家出發(fā)步行前往學校,途中在路邊一飯店吃早餐,如圖所示是王老師從家到學校這一過程中所走的路程S(米)與時間t()之間的關系.

(1)學校離他家 米,從出發(fā)到學校,王老師共用了 分鐘;

(2)王老師吃早餐用了多少分鐘?

(3)王老師吃早餐以前的速度快還是吃完早餐以后的速度快?吃完早餐后的平均速度是多少?

【答案】(1)1000,25;(2)10分鐘;(3)吃完早餐以后速度快,吃完早餐后的平均速度是100(米/分)

【解析】試題分析:(1)由于步行前往學校,途中在路邊一飯店吃早餐,那么行駛路程S(米)與時間t()之間的關系圖象中有一段平行x軸的線段,然后學校,根據(jù)圖象可以直接得到結(jié)論;(2)根據(jù)圖象中平行線x軸的線段即可確定王老師吃早餐用了多少時間;

(3)根據(jù)圖象可以分別求出吃早餐以前的速度和吃完早餐以后的速度,然后比較即可得到結(jié)果.

試題解析:

1)學校距他家1000米,王老師用25分鐘;

2)王老師吃早餐用了20-10=10分鐘;

3)吃完早餐以后速度快,

1000-500÷25-20=100(米/分).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點OA在數(shù)軸上表示的數(shù)分別是0,l,將線段OA分成1000等份,其分點由左向右依次為M1,M2M999;將線段OM1分成1000等份,其分點由左向右依次為N1,N2N999;將線段ON1分成1000等份,其分點由左向右依次為P1,P2P999.則點P314所表示的數(shù)用科學記數(shù)法表示為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC中,AB=AC,點D,E分別在直線AB,AC上,且∠DEC=DCE

1)如圖1,點D在線段AB上∠A=90°,若等腰直角三角形的邊與斜邊之比為,求證:

2)如圖2,若點D在線段AB的延長線上,∠A=60°,求證:EB=AD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、 乙兩家超市以相同的價格出售同樣的商品.為了吸引顧客,各自推出不同的優(yōu)惠方案: 在甲超市累計購買商品超出 300 元之后,超出部分按原價八折優(yōu)惠;在乙超市累計購買商品超出 200 元之后,超出部分按原價九折優(yōu)惠.設顧客預計累計購物 ( 300)

1)請用x 的代數(shù)式分別表示顧客在兩家超市購物所付的費用;

2)試比較顧客到哪家超市購物更優(yōu)惠? 說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,從熱氣球C處測得地面A,B兩點的俯角分別是30°、45°,如果此時熱氣球C處的高度CD為100米,點A,D,B在同一直線上,則AB兩點的距離是( )

A.200米
B.200
C.220
D.100( )米

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,點D在BC的延長線上,且BD=AB,過點B作BE⊥AC,與BD的垂線DE交于點E.

(1)求證:△ABC≌△BDE;
(2)△BDE可由△ABC旋轉(zhuǎn)得到,利用尺規(guī)作出旋轉(zhuǎn)中心O(保留作圖痕跡,不寫作法).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了進一步了解七年級800名學生的身體素質(zhì)情況,體育老師抽取七年級男女各25位學生進行一分鐘跳繩次數(shù)測試,以測試數(shù)據(jù)為樣本,繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖.如下所示:

組別

次數(shù)x

頻數(shù)(人數(shù))

1

80≤x100

6

2

100≤x120

8

3

120≤x140

4

140≤x160

16

5

160≤x180

6

請結(jié)合圖表完成下列問題:

(1)表中的,跳繩次數(shù)低于140次的有人,則

(2)請把頻數(shù)分布直方圖補充完整;

3)若七年級學生一分鐘跳繩次數(shù)(x)達標要求是:x120.請估算七年級學生達標人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=mx+n與正比例函數(shù)y=mnx(m,n為常數(shù),且mn≠0,n>0)的圖象是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)請在橫線上填寫合適的內(nèi)容,完成下面的證明:

如圖如果ABCD,求證:∠APC=∠A+C

證明:過PPMAB

所以∠A=∠APM,(   )

因為PMABABCD(已知)

所以∠C   (   )

因為∠APC=∠APM+CPM

所以∠APC=∠A+C(等量代換)

(2)如圖,ABCD,根據(jù)上面的推理方法,直接寫出∠A+P+Q+C   

(3)如圖,ABCD,若∠ABPx,∠BPQy,∠PQCz,∠QCDm,則m   (x、y、z表示)

查看答案和解析>>

同步練習冊答案