【題目】如圖的ABC中,ABACBC,且DBC上一點(diǎn),F(xiàn)打算在AB上找一點(diǎn)P,在AC上找一點(diǎn)Q,使得APQ與以PD、Q為頂點(diǎn)的三角形全等,以下是甲、乙兩人的作法:

甲:連接AD,作AD的中垂線分別交AB、ACP點(diǎn)、Q點(diǎn),則P、Q兩點(diǎn)即為所求;

乙:過(guò)D作與AC平行的直線交ABP點(diǎn),過(guò)D作與AB平行的直線交ACQ點(diǎn),則PQ兩點(diǎn)即為所求;

對(duì)于甲、乙兩人的作法,下列判斷何者正確(  )?

A.兩人皆正確B.兩人皆錯(cuò)誤C.甲正確,乙錯(cuò)誤D.甲錯(cuò)誤,乙正確

【答案】A

【解析】

如圖1,根據(jù)線段垂直平分線的性質(zhì)得到PA=PD,QA=QD,則根據(jù)“SSS”可判斷△APQ≌△DPQ,則可對(duì)甲進(jìn)行判斷;如圖2,根據(jù)平行四邊形的判定方法先證明四邊形APDQ為平行四邊形,則根據(jù)平行四邊形的性質(zhì)得到PA=DQ,PD=AQ,則根據(jù)“SSS”可判斷△APQ≌△DQP,則可對(duì)乙進(jìn)行判斷.

如圖1,∵PQ垂直平分AD,

PA=PD,QA=QD,

PQ=PQ,

∴△APQ≌△DPQ(SSS),所以甲正確;

如圖2,PDAQ,DQAP,

∴四邊形APDQ為平行四邊形,

PA=DQ,PD=AQ

PQ=QP,

∴△APQ≌△DQP(SSS),所以乙正確。

故選:A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是交警在一個(gè)路口統(tǒng)計(jì)的某個(gè)時(shí)段往車(chē)輛的車(chē)速情況(單位:千米/時(shí)).則這些車(chē)輛行駛速度的中位數(shù)是________、眾數(shù)是________、平均數(shù)是________(結(jié)果精確到).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示是某公園為迎接“中國(guó)–南亞博覽會(huì)”設(shè)置的一休閑區(qū).,弧的半徑長(zhǎng)是米,的中點(diǎn),點(diǎn)在弧上,,則圖中休閑區(qū)(陰影部分)的面積是( )

A. 2 B. 2 C. 2 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三角形紙片ABC中,∠B=2∠C,把三角形紙片沿直線AD折疊,點(diǎn)B落在AC邊上的E處,那么下列等式成立的是( 。

A.AC=AD+BDB.AC=AB+BDC.AC=AD+CDD.AC=AB+CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+4x軸于點(diǎn)A(﹣2,0)和B(BA右側(cè)),交y軸于點(diǎn)C,直線y=經(jīng)過(guò)點(diǎn)B,交y軸于點(diǎn)D,且DOC中點(diǎn).

(1)求拋物線的解析式;

(2)若P是第一象限拋物線上的一點(diǎn),過(guò)P點(diǎn)作PHBDH,設(shè)P點(diǎn)的橫坐標(biāo)是t,線段PH的長(zhǎng)度是d,求dt的函數(shù)關(guān)系式;

(3)在(2)的條件下,當(dāng)d=時(shí),將射線PH繞著點(diǎn)P順時(shí)針?lè)较蛐D(zhuǎn)45°交拋物線于點(diǎn)Q,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=x2+bx+c的圖象交x軸于A、D兩點(diǎn),并經(jīng)過(guò)B點(diǎn),已知A點(diǎn)坐標(biāo)是(2,0),B點(diǎn)坐標(biāo)是(8,6).

(1)求二次函數(shù)的解析式;

(2)求函數(shù)圖象的頂點(diǎn)坐標(biāo)及D點(diǎn)的坐標(biāo);

(3)二次函數(shù)的對(duì)稱軸上是否存在一點(diǎn)C,使得CBD的周長(zhǎng)最小?若C點(diǎn)存在,求出C點(diǎn)的坐標(biāo);若C點(diǎn)不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把三根長(zhǎng)為3cm、4cm5cm的細(xì)木棒首尾相連,能搭成一個(gè)直角三角形.

(1)如果把這三根細(xì)木棒的長(zhǎng)度分別擴(kuò)大為原來(lái)的a倍(a>1),那么所得的三根細(xì)木棒能不能搭成一個(gè)直角三角形, 為什么?

(2)如果把這三根細(xì)木棒的長(zhǎng)度分別延長(zhǎng)x cmx>0),那么所得的三根細(xì)木棒還能搭成一個(gè)三角形嗎?為什么?如果能,請(qǐng)判斷這個(gè)三角形的形狀(銳角三角形、直角三角形還是鈍角三角形),并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)的圖象如圖所示,下列五個(gè)代數(shù)式、、、中,值大于的個(gè)數(shù)為(

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,以為直徑的分別交、兩邊于點(diǎn)、,則的面積為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案