【題目】已知:如圖,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點(diǎn)C、D、E三點(diǎn)在同一直線上,連接BD.

(1)求證:△BAD≌△CAE;

(2)試猜想BD、CE有何特殊位置關(guān)系,并證明.

【答案】1)見解析(2BD⊥CE,證明見解析.

【解析】

試題(1)要證△BAD≌△CAE,現(xiàn)有AB=ACAD=AE,需它們的夾角∠BAD=∠CAE,而由∠BAC=∠DAE=90°很易證得.

2BD、CE有何特殊位置關(guān)系,從圖形上可看出是垂直關(guān)系,可向這方面努力.要證BD⊥CE,需證∠BDE=90°,需證∠ADB+∠ADE=90°可由直角三角形提供.

試題解析:(1)證明:∵∠BAC=∠DAE=90°

∴∠BAC+∠CAD=∠DAE+CAD

∠BAD=∠CAE,

∵AB=AC,AD=AE,

∴△BAD≌△CAESAS).

2BD、CE特殊位置關(guān)系為BD⊥CE

證明如下:由(1)知△BAD≌△CAE,

∴∠ADB=∠E

∵∠DAE=90°,

∴∠E+∠ADE=90°

∴∠ADB+∠ADE=90°

∠BDE=90°

∴BDCE特殊位置關(guān)系為BD⊥CE

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:
如圖1,在平面直角坐標(biāo)系xOy中,直線y1=ax+b與雙曲線y2= 交于A(1,3)和B(﹣3,﹣1)兩點(diǎn).
觀察圖象可知:
①當(dāng)x=﹣3或1時(shí),y1=y2
②當(dāng)﹣3<x<0或x>1時(shí),y1>y2 , 即通過觀察函數(shù)的圖象,可以得到不等式ax+b> 的解集.
有這樣一個(gè)問題:求不等式x3+4x2﹣x﹣4>0的解集.
某同學(xué)根據(jù)學(xué)習(xí)以上知識的經(jīng)驗(yàn),對求不等式x3+4x2﹣x﹣4>0的解集進(jìn)行了探究.

下面是他的探究過程,請將(2)、(3)、(4)補(bǔ)充完整:
(1)將不等式按條件進(jìn)行轉(zhuǎn)化:
(2)構(gòu)造函數(shù),畫出圖象
設(shè)y3=x2+4x﹣1,y4= ,在同一坐標(biāo)系中分別畫出這兩個(gè)函數(shù)的圖象.
雙曲線y4= 如圖2所示,請?jiān)诖俗鴺?biāo)系中畫出拋物線y3=x2+4x﹣1;(不用列表)
(3)確定兩個(gè)函數(shù)圖象公共點(diǎn)的橫坐標(biāo),觀察所畫兩個(gè)函數(shù)的圖象,猜想并通過代入函數(shù)解析式驗(yàn)證可知:滿足y3=y4的所有x的值為
(4)借助圖象,寫出解集
結(jié)合(1)的討論結(jié)果,觀察兩個(gè)函數(shù)的圖象可知:不等式x3+4x2﹣x﹣4>0的解集

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們規(guī)定:平面內(nèi)點(diǎn)A到圖形G上各個(gè)點(diǎn)的距離的最小值稱為該點(diǎn)到這個(gè)圖形的最小距離d,點(diǎn)A到圖形G上各個(gè)點(diǎn)的距離的最大值稱為該點(diǎn)到這個(gè)圖形的最大距離D,定義點(diǎn)A到圖形G的距離跨度為R=D﹣d.
(1)①如圖1,在平面直角坐標(biāo)系xOy中,圖形G1為以O(shè)為圓心,2為半徑的圓,直接寫出以下各點(diǎn)到圖形G1的距離跨度:
A(﹣1,0)的距離跨度
B( ,﹣ )的距離跨度;
C(﹣3,2)的距離跨度
②根據(jù)①中的結(jié)果,猜想到圖形G1的距離跨度為2的所有的點(diǎn)組成的圖形的形狀是

(2)如圖2,在平面直角坐標(biāo)系xOy中,圖形G2為以C(1,0)為圓心,2為半徑的圓,直線y=k(x+1)上存在到G2的距離跨度為2的點(diǎn),求k的取值范圍.

(3)如圖3,在平面直角坐標(biāo)系xOy中,射線OA:y= x(x≥0),圓C是以3為半徑的圓,且圓心C在x軸上運(yùn)動(dòng),若射線OA上存在點(diǎn)到圓C的距離跨度為2,直接寫出圓心C的橫坐標(biāo)xc的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,點(diǎn)E在對角線AC上,EC=BC=DC.
(1)若∠CBD=39°,求∠BAD的度數(shù);
(2)求證:∠1=∠2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=CD,BF=DE,AEBD,CFBD,垂足分別為E,F(xiàn).

(1)求證:ABE≌△CDF;

(2)若AC與BD交于點(diǎn)O,求證:AO=CO.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=8,BC=6.點(diǎn)E在邊AB上,點(diǎn)F在邊CD上,點(diǎn)G、H在對角線AC上.若四邊形EGFH是菱形,則AE的長是( 。

A. 2 B. 3 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AB=8cm,對角線AC,BD相交于點(diǎn)O,點(diǎn)E,F(xiàn)分別從B,C兩點(diǎn)同時(shí)出發(fā),以1cm/s的速度沿BC,CD運(yùn)動(dòng),到點(diǎn)C,D時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s),△OEF的面積為s(cm2),則s(cm2)與t(s)的函數(shù)關(guān)系可用圖象表示為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解答題.

某校學(xué)生積極為地震災(zāi)區(qū)捐款奉獻(xiàn)愛心.小穎隨機(jī)抽查其中30名學(xué)生的捐款情況如下:(單位:元)2、5、35、8、5、10、15、20、15、5、45、10、2、8、20、30、40、10、15、15、30、15、8、25、25、30、15、8、10、50.

(1)這30名學(xué)生捐款的最大值、最小值、極差、平均數(shù)各是多少?

(2)將30名學(xué)生捐款額分成下面5組,請你完成頻數(shù)統(tǒng)計(jì)表:

(3)根據(jù)上表,作出頻數(shù)分布直方圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系中有三點(diǎn)A(﹣2,1)、B(3,1)、C(2,3).請回答如下問題:

(1)在坐標(biāo)系內(nèi)描出點(diǎn)A、B、C的位置,并求△ABC的面積;

(2)在平面直角坐標(biāo)系中畫出△A′B′C′,使它與△ABC關(guān)于x軸對稱,并寫出△A′B′C′三頂點(diǎn)的坐標(biāo);

(3)若M(x,y)是△ABC內(nèi)部任意一點(diǎn),請直接寫出這點(diǎn)在△A′B′C′內(nèi)部的對應(yīng)點(diǎn)M′的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案