【題目】已知:拋物線y=mx2+(m﹣2)x﹣2m+2(m≠0).
(1)求證:拋物線與x軸有交點;
(2)若拋物線與x軸交于點A(x1,0),B(x2,0),點A在點B的右側(cè),且x1+2x2=1.
①求m的值;
②點P在拋物線上,點G(n,﹣n﹣),求PG的最小值.
【答案】(1)見解析;(2)①m=1;②PG的最小值=
【解析】
(1)令y=0,再求出的方程的△是否大于等于0即可;
(2)①令y=0,解一元二次方程,再根據(jù)已知點A在點B的右側(cè),且,求解即可;②先假設與直線平行的直線l的關(guān)系式為,
若直線l與拋物線只有一個交點C,列方程,根據(jù)得b的值,則點C到直線的距離就是PG的最小值.
(1)當y=0時,
.
∴拋物線與x軸有交點;
(2)①當y=0時,,
解得或,
∵點A在點B的右側(cè),
∴,
∵,
∴ 當,時,1+2,解得m=1,
此時,,滿足,故m=1符合題意,
當,時,,解得m=2.
此時,,與矛盾,故m=2不符合題意.
∴m=1;
②
當m=1時,拋物線解析式為 ,
∵點G,
∴點G在直線上.
假設與直線平行的直線l的關(guān)系式
為,
若直線l與拋物線只有一個交點C,
則此時方程 的,解得b=.
∴直線l的關(guān)系式 ,
如圖,直線l與x軸,y軸分別交于D,M兩點,直線
與y軸交于N點,
∴D(,0),M(0,).
∴OD=,OM=.
∴MN=,
DM== ,
過點M作MH⊥HN,CE⊥EN,當P點與C點重合,G點與E點重合時,PG長最小,
此時△MHN∽△DOM,
∴,即,
∴PG=MH=,
即PG的最小值是 .
故答案為:(1)見解析;(2)①m=1;②PG的最小值=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=30°,將△ABC繞點A逆時針旋轉(zhuǎn)α度(30<α<150)得到△AB′C′,B、C兩點的對應點分別為點B′、C′,連接BC′,BC與AC、AB′相交于點E、F.
(1)當α=70時,∠ABC′=_____°,∠ACB′=______°.
(2)求證:BC′∥CB′.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(12分)如圖,已知三角形ABC的邊AB是⊙O的切線,切點為B.AC經(jīng)過圓心O并與圓相交于點D、C,過C作直線CE丄AB,交AB的延長線于點E.
(1)求證:CB平分∠ACE;
(2)若BE=3,CE=4,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】同學們都學習過《幾何》課本第三冊第199頁的第11題,它是這樣的:如圖,A為⊙O的直徑EF上的一點,OB是和這條直徑垂直的半徑,BA和⊙O相交于另一點C,過點C的切線和EF的延長線相交于點D,求證:DA=DC.
(1)現(xiàn)將圖1中的直徑EF所在直線進行平行移動到圖2所示的位置,此時OB與EF垂直相交于H,其它條件不變.
①求證:DA=DC;
②當DF:EF=1:8,且DF=時,求ABAC的值.
(2)將圖2中的EF所在直線繼續(xù)向上平行移動到圖3所示的位置,使EF與OB的延長線垂直相交于H,A為EF上異于H的一點,且AH小于⊙O的切線交EF于D,試猜想:DA=DC是否仍然成立?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC中,BC=12,高AD=8,矩形EFGH的一邊GH在BC上,頂點E、F分別在AB、AC上,AD與EF交于點M.
(1)求證:;
(2)設EF=x,EH=y(tǒng),寫出y與x之間的函數(shù)表達式;
(3)設矩形EFGH的面積為S,求S與x之間的函數(shù)表達式,并寫出S的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與y軸交于點A(0,2),對稱軸為直線x=﹣2,平行于x軸的直線與拋物線交于B、C兩點,點B在對稱軸左側(cè),BC=6.
(1)求此拋物線的解析式.
(2)點P在x軸上,直線CP將△ABC面積分成2:3兩部分,請直接寫出P點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+x+2與x軸交于點A,B,與y軸交于點C.
(1)試求A,B,C的坐標;
(2)將△ABC繞AB中點M旋轉(zhuǎn)180°,得到△BAD.3
①求點D的坐標;
②判斷四邊形ADBC的形狀,并說明理由;
(3)在該拋物線對稱軸上是否存在點P,使△BMP與△BAD相似?若存在,請直接寫出所有滿足條件的P點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線MN與以AB為直徑的半圓相切于點C,∠A=28°.
(1)求∠ACM的度數(shù);
(2)在MN上是否存在一點D,使ABCD=ACBC,為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com