(本小題滿分12分)已知:拋物線與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C. 其中點(diǎn)A在x軸的負(fù)半軸上,點(diǎn)C在y軸的負(fù)半軸上,線段OA、OC的長(OA<OC)是方程的兩個根,且拋物線的對稱軸是直線.
(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)求此拋物線的解析式;
(3)若點(diǎn)D是線段AB上的一個動點(diǎn)(與點(diǎn)A、B不重合),過點(diǎn)D作DE∥BC交AC于點(diǎn)E,連結(jié)CD,設(shè)BD的長為m,△CDE的面積為S,求S與m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍.S是否存在最大值?若存在,求出最大值并求此時D點(diǎn)坐標(biāo);若不存在,請說明理由.
解:(1)∵OA、OC的長是x2-5x+4=0的根,OA<OC
∴OA=1,OC=4
∵點(diǎn)A在x軸的負(fù)半軸,點(diǎn)C在y軸的負(fù)半軸
∴A(-1,0) C(0,-4)
∵拋物線的對稱軸為
∴由對稱性可得B點(diǎn)坐標(biāo)為(3,0)
∴A、B、C三點(diǎn)坐標(biāo)分別是:A(-1,0),B(3,0),C(0,-4)
(2)∵點(diǎn)C(0,-4)在拋物線圖象上
∴
將A(-1,0),B(3,0)代入得
解之得
∴ 所求拋物線解析式為:
(3)根據(jù)題意,,則
在Rt△OBC中,BC==5
∵,∴△ADE∽△ABC
∴
∴
過點(diǎn)E作EF⊥AB于點(diǎn)F,則sin∠EDF=sin∠CBA=
∴
∴EF=DE==4-m
∴S△CDE=S△ADC-S△ADE
=(4-m)×4(4-m)( 4-m)
=m2+2m(0<m<4)
∵S=(m-2)2+2, a=<0
∴當(dāng)m=2時,S有最大值2.
∴點(diǎn)D的坐標(biāo)為(1,0).
解析
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年九年級第二次模擬考試數(shù)學(xué)卷 題型:解答題
(本小題滿分12分)
如圖,反比例函數(shù)的圖象經(jīng)過A、B兩點(diǎn),根據(jù)圖中信息解答下列問題:
1.(1)寫出A點(diǎn)的坐標(biāo);
2.(2)求反比例函數(shù)的解析式;
3.(3)若點(diǎn)A繞坐標(biāo)原點(diǎn)O旋轉(zhuǎn)90°后得到點(diǎn)C,請寫出點(diǎn)C的坐標(biāo);并求出直線BC的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012年河北省衡水市五校九年級第三次聯(lián)考數(shù)學(xué)卷 題型:解答題
(本小題滿分12分)
如圖(1),△ABC與△EFD為等腰直角三角形,AC與DE重合,AB=EF=9,∠BAC=∠DEF=90°,固定△ABC,將△EFD繞點(diǎn)A 順時針旋轉(zhuǎn),當(dāng)DF邊與AB邊重合時,旋轉(zhuǎn)中止。不考慮旋轉(zhuǎn)開始和結(jié)束時重合的情況,設(shè)DE、DF(或它們的延長線)分別交BC(或它的延長線)于G、H點(diǎn),如圖(2)。
1.(1)問:始終與△AGC相似的三角形有 及 ;
2.(2)設(shè)CG=x,BH=y(tǒng),求y關(guān)于x的函數(shù)關(guān)系式(只要求根據(jù)2的情況說明理由);
3.(3)問:當(dāng)x為何值時,△AGH是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012年河北省衡水市五校九年級第三次聯(lián)考數(shù)學(xué)卷 題型:解答題
(本小題滿分12分)某班同學(xué)到野外活動,為測量一池塘兩端A、B的距離,設(shè)計了幾種方案,下面介紹兩種:(I)如圖(1),先在平地取一個可以直接到達(dá)A、B的點(diǎn)C,并分別延長AC到D,BC到E,使DC=AC,BC=EC,最后測出DE的距離即為AB的長。(II)如圖(2),先過B點(diǎn)作AB的垂線BF,再在BF上取C、D兩點(diǎn),使BC=CD,接著過點(diǎn)D作BD的垂線DE,交AC的延長線于E,則測出DE的長即為AB的距離。閱讀后回答下列問題:
1.(1)方案(I)是否可行?為什么?
2.(2)方案(II)是否切實(shí)可行?為什么?
3.(3)方案(II)中作BF⊥AB,ED⊥BF的目的是 ;若僅滿足∠ABD=∠BDE≠90°,方案(II)是否成立?
4.(4)方案(II)中,若使BC=n·CD,能否測得(或求出)AB的長?理由是 ,若ED=m,則AB= 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012年江蘇GSJY八年級第二次學(xué)情調(diào)研考試數(shù)學(xué)卷 題型:解答題
(本小題滿分12分)
1. (1)觀察發(fā)現(xiàn)
如(a)圖,若點(diǎn)A,B在直線同側(cè),在直線上找一點(diǎn)P,使AP+BP的值最。
做法如下:作點(diǎn)B關(guān)于直線的對稱點(diǎn),連接,與直線的交點(diǎn)就是所求的點(diǎn)P
再如(b)圖,在等邊三角形ABC中,AB=2,點(diǎn)E是AB的中點(diǎn),AD是高,在AD上找一點(diǎn)P,使BP+PE的值最。
做法如下:作點(diǎn)B關(guān)于AD的對稱點(diǎn),恰好與點(diǎn)C重合,連接CE交AD于一點(diǎn),則這點(diǎn)就是所求的點(diǎn)P,故BP+PE的最小值為 . (2分)
2.(2)實(shí)踐運(yùn)用
如圖,菱形ABCD的兩條對角線分別長6和8,點(diǎn)P是對角線AC上的一個動點(diǎn),點(diǎn)M、N分別是邊AB、BC的中點(diǎn),求PM+PN的最小值。(5分)
3.(3)拓展延伸
如(d)圖,在四邊形ABCD的對角線AC上找一點(diǎn)P,使∠APB=∠APD.保留作圖痕跡,不必寫出作法. (5分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014屆湖北省孝感市七年級下學(xué)期期中考試數(shù)學(xué)卷 題型:解答題
.(本小題滿分12分)
如圖,AD為△ABC的中線,BE為△ABD的中線。
(1)∠ABE=15°,∠BAD=40°,求∠BED的度數(shù);
(2)在△BED中作BD邊上的高;
(3)若△ABC的面積為40,BD=5,則△BDE 中BD邊上的高為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com