如圖,鈍角三角形ABC的面積為15,最長邊AB=10,BD平分∠ABC,點M、N分別是BD、BC上的動點,則CM+MN的最小值為______.
過點C作CE⊥AB于點E,交BD于點M,過點M作MN⊥BC于N,
∵BD平分∠ABC,ME⊥AB于點E,MN⊥BC于N,
∴MN=ME,
∴CE=CM+ME=CM+MN的最小值.
∵三角形ABC的面積為15,AB=10,
1
2
×10•CE=15,
∴CE=3.
即CM+MN的最小值為3.
故答案為3.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,是我國幾家銀行的標志,在這幾個圖案中是軸對稱圖形的有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖所示,已知在三角形紙片ABC中,BC=3,AB=6,∠BCA=90°,在AC上取一點E,以BE為折痕翻折△ABC,使AB的一部分與BC重合,A與BC延長線上的點D重合,則線段AD的長度為( 。
A.6B.3C.4D.2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,將矩形ABCD沿對角線BD折疊,C點與E點重合,若AB=3,BC=9,求折疊后重疊部分(△BDF)的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,已知矩形ABCD的兩邊AB與BC的比為4:5,E是AB上的一點,沿CE將△EBC向上翻折,若B點恰好落在邊AD上的F點,則tan∠DCF等于( 。
A.
3
4
B.
4
3
C.
3
5
D.
5
3

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,方格紙中每個小方格都是邊長為1的正方形,我們把以格點連線為邊的多邊形稱為“格點多邊形”.如圖(一)中四邊形ABCD就是一個“格點四邊形”.
(1)作出四邊形ABCD關于直線BD對稱的四邊形A′B′C′D′;
(2)求圖(一)中四邊形ABCD的面積;
(3)在圖(二)方格紙中畫一個格點三角形EFG,使△EFG的面積等于四邊形ABCD的面積且△EFG為軸對稱圖形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖.在直角坐標系中,矩形ABC0的邊OA在x軸上,邊0C在y軸上,點B的坐標為(1,3),將矩形沿對角線AC翻折,B點落在D點的位置,且AD交y軸于點E.那么點D的坐標為( 。
A.(-
4
5
,
12
5
)
B.(-
2
5
,
13
5
)
C.(-
1
2
,
13
5
)
D.(-
3
5
,
12
5
)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知矩形ABCD,現(xiàn)將矩形沿對角線BD折疊,得到如圖所示的圖形,
(1)求證:△ABE≌△C′DE;
(2)若AB=6,AD=10,求S△ABE

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,△ABE和△ACD是△ABC分別沿著AB,AC邊翻折180°形成的,若∠BAC=150°,則∠θ的度數(shù)是( 。
A.60°B.50°C.40°D.30°

查看答案和解析>>

同步練習冊答案