【題目】如圖,半徑為1個(gè)單位的圓片上有一點(diǎn)A與數(shù)軸上的原點(diǎn)重合,AB是圓片的直徑.(注:結(jié)果保留π )
(1)把圓片沿?cái)?shù)軸向右滾動(dòng)半周,點(diǎn)B到達(dá)數(shù)軸上點(diǎn)C的位置,點(diǎn)C表示的數(shù)是 數(shù)(填“無(wú)理”或“有理”),這個(gè)數(shù)是 ;
(2)把圓片沿?cái)?shù)軸滾動(dòng)2周,點(diǎn)A到達(dá)數(shù)軸上點(diǎn)D的位置,點(diǎn)D表示的數(shù)是 ;
(3)圓片在數(shù)軸上向右滾動(dòng)的周數(shù)記為正數(shù),圓片在數(shù)軸上向左滾動(dòng)的周數(shù)記為負(fù)數(shù),依次運(yùn)動(dòng)情況記錄如下:+2,﹣1,+3,﹣4,﹣3.
①第 次滾動(dòng)后,A點(diǎn)距離原點(diǎn)最近,第 次滾動(dòng)后,A點(diǎn)距離原點(diǎn)最遠(yuǎn).
②當(dāng)圓片結(jié)束運(yùn)動(dòng)時(shí),A點(diǎn)運(yùn)動(dòng)的路程共有 ,此時(shí)點(diǎn)A所表示的數(shù)是 .
【答案】(1)無(wú)理數(shù),п;(2)4п或-4п;(3)①4,3;②26п,-6п
【解析】
(1)利用圓的半徑以及滾動(dòng)周數(shù)即可得出滾動(dòng)距離;
(2)利用圓的半徑以及滾動(dòng)周數(shù)即可得出滾動(dòng)距離;
(3)①利用滾動(dòng)的方向以及滾動(dòng)的周數(shù)即可得出A點(diǎn)移動(dòng)距離變化;
②利用絕對(duì)值的性質(zhì)以及有理數(shù)的加減運(yùn)算得出移動(dòng)距離和A表示的數(shù)即可.
解:(1)把圓片沿?cái)?shù)軸向左滾動(dòng)半周,點(diǎn)B到達(dá)數(shù)軸上點(diǎn)C的位置,點(diǎn)C表示的數(shù)是無(wú)理數(shù),這個(gè)數(shù)是π;
故答案為:無(wú)理,π;
(2)把圓片沿?cái)?shù)軸滾動(dòng)2周,點(diǎn)A到達(dá)數(shù)軸上點(diǎn)D的位置,點(diǎn)D表示的數(shù)是4π或-4π;
故答案為:4π或-4π;
(3)①∵圓片在數(shù)軸上向右滾動(dòng)的周數(shù)記為正數(shù),圓片在數(shù)軸上向左滾動(dòng)的周數(shù)記為負(fù)數(shù),依次運(yùn)動(dòng)情況記錄如下:+2,-1,+3,-4,-3,
∴第4次滾動(dòng)后,A點(diǎn)距離原點(diǎn)最近,第3次滾動(dòng)后,A點(diǎn)距離原點(diǎn)最遠(yuǎn),
故答案為:4,3;
②∵|+2|+|-1|+|+3|+|-4|+|-3|=13,
∴13×2π×1=26π,
∴A點(diǎn)運(yùn)動(dòng)的路程共有26π;
∵(+2)+(-1)+(+3)+(-4)+(-3)=-3,
(-3)×2π=-6π,
∴此時(shí)點(diǎn)A所表示的數(shù)是:-6π,
故答案為:26π,-6π.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知點(diǎn)C是線段AB上一點(diǎn),點(diǎn)M,N,P分別是線段AC,BC,AB的中點(diǎn).
(1)若AB=12 cm,則MN的長(zhǎng)度是______cm;
(2)若AC=3 cm,CP=1 cm,求線段PN的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,船A、B在東西方向的海岸線MN上,均收到已觸礁擱淺的船P的求救信號(hào),已知船P在船A的北偏東62°方向上,在船B的北偏西37°方向上,若AP=30海里.求船B到船P的距離PB(結(jié)果用含非特殊角的三角函數(shù)表示即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在□ABCD中,若∠ABC的平分線把邊AD分成長(zhǎng)是2cm和3cm的兩條線段,求□ABCD的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】適合下列條件的△ABC中,直角三角形的個(gè)數(shù)為( )
①a=,b=,c=; ②a=b,∠A=45°; ③a=2,b=2,c=;④∠A=27°,∠B=63°;⑤a=9,b=12,c=15
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,EF過(guò)□ABCD對(duì)角線的交點(diǎn)O,交AD于E,交BC于F,若□ ABCD的周長(zhǎng)為16,OE=2.5,則四邊形EFCD的周長(zhǎng)為( )
A. 10 B. 11 C. 12 D. 13
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列幾何體是由4個(gè)相同的小正方體搭成的,其中主視圖和左視圖相同的是( )
A. A B. B C. C D. D
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,過(guò)點(diǎn)C的直線MN∥AB,D為AB邊上一點(diǎn),過(guò)點(diǎn)D作DE⊥BC,交直線MN于點(diǎn)E,垂足為F,連接CD,BE
(1)求證:CE=AD
(2)若D為AB的中點(diǎn),則∠A的度數(shù)滿足什么條件時(shí),四邊形BECD是正方形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D,E,F(xiàn)分別是AB,BC,CA的中點(diǎn),AH是邊BC上的高.
(1)求證:四邊形ADEF是平行四邊形;
(2)求證:∠DHF=∠DEF.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com