【題目】(本題滿分12分)在平面直角坐標(biāo)系中,拋物線經(jīng)過(guò)A(-3,0)、B(4,0)兩點(diǎn),且與y軸交于點(diǎn)C,點(diǎn)D在x軸的負(fù)半軸上,且BD=BC,有一動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿線段AB以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)B移動(dòng),同時(shí)另一個(gè)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿線段CA以某一速度向點(diǎn)A移動(dòng).
(1)求該拋物線的解析式;
(2)若經(jīng)過(guò)t秒的移動(dòng),線段PQ被CD垂直平分,求此時(shí)t的值;
(3)該拋物線的對(duì)稱軸上是否存在一點(diǎn)M,使MQ+MA的值最。咳舸嬖冢蟪鳇c(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)拋物線的解析式為 .(2)t的值為.(3)在拋物線的對(duì)稱軸上存在一點(diǎn)M( , ),使得MQ+MA的值最小.
【解析】解:(1)∵拋物線經(jīng)過(guò)A(-3,0),B(4,0)兩點(diǎn),
∴ 解得
∴所求拋物線的解析式為.
(2)如圖,依題意知AP=t,連接DQ,
由A(-3,0),B(4,0),C(0,4),
可得AC=5,BC= ,AB=7.
∵BD=BC,
∴ .
∵CD垂直平分PQ,∴QD=DP,∠CDQ= ∠CDP.
∵BD=BC,∴∠DCB= ∠CDB.
∴∠CDQ= ∠DCB.∴DQ∥BC.
∴△ADQ∽△ABC.∴ .∴ .
∴ .解得 .
∴ .
∴線段PQ被CD垂直平分時(shí),t的值為 .
(3)設(shè)拋物線的對(duì)稱軸 與x軸交于點(diǎn)E.
點(diǎn)A、B關(guān)于對(duì)稱軸 對(duì)稱,連接BQ交該對(duì)稱軸于點(diǎn)M.
則 ,即.
當(dāng)BQ⊥AC時(shí),BQ最小.
此時(shí),∠EBM= ∠ACO.
∴ .
∴ .∴ ,
解得ME=.
∴M(, ).
即在拋物線的對(duì)稱軸上存在一點(diǎn)M( , ),使得MQ+MA的值最小.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,點(diǎn)O為AC邊上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)O作直線MN∥BC,設(shè)MN交∠BCA的外角平分線CF于點(diǎn)F,交∠ACB內(nèi)角平分線CE于E.
(1)試說(shuō)明EO=FO;
(2)當(dāng)點(diǎn)O運(yùn)動(dòng)到何處時(shí),四邊形AECF是矩形并證明你的結(jié)論;
(3)若AC邊上存在點(diǎn)O,使四邊形AECF是正方形,猜想△ABC的形狀并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中,正確的是( 。
A.點(diǎn)P(3,2)到x軸距離是3
B.在平面直角坐標(biāo)系中,點(diǎn)(2,﹣3)和點(diǎn)(﹣2,3)表示同一個(gè)點(diǎn)
C.若y=0,則點(diǎn)M(x,y)在y軸上
D.在平面直角坐標(biāo)系中,第三象限內(nèi)點(diǎn)的橫坐標(biāo)與縱坐標(biāo)同號(hào)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】擲一枚正方體的骰子,各個(gè)面上分別標(biāo)有數(shù)字1, 2,3,4,5,6,求下列事件發(fā)生的頻率的大小:
①朝上的數(shù)字是奇數(shù);
②朝上的數(shù)字能被3除余1;
③朝上的數(shù)字不是3的倍數(shù);
④朝上的數(shù)字小于6;
⑤朝上的數(shù)字不小于3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形ABCD中,E、F分別在AD、DC上,∠ABE=∠CBF=15°,G是AD上另一點(diǎn),且∠BGD=120°,連接EF、BG、FG、EF、BG交于點(diǎn)H,則下面結(jié)論:①DE=DF;②△BEF是等邊三角形;③∠BGF=45°;④BG=EG+FG中,正確的是(請(qǐng)?zhí)罘?hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】九年級(jí)某班40位同學(xué)的年齡如表所示:
年齡(歲) | 13 | 14 | 15 | 16 |
人數(shù) | 3 | 16 | 19 | 2 |
則該班40名同學(xué)年齡的眾數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a>-2,若當(dāng)1≤x≤2時(shí),函數(shù)y= (a≠0)的最大值與最小值之差是1,求a的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com