如圖,直角梯形紙片ABCD,AD⊥AB,AB=8,AD=CD=4,點E、F分別在線段AB、AD上,將△AEF沿EF翻折,點 A的落點記為P.
(1)當(dāng)AE=5,P落在線段CD上時,PD=(    );
(2)當(dāng)P落在直角梯形ABCD內(nèi)部時,PD的最小值等于(    )
解:(1)過P作PG⊥AB于G,則四邊形DAGP是矩形,PG=DA=4,
∵PE=AE=5,
∴GE=
∴PD=AG=AE-GE=5-3=2;
(2)連接ED,作P1P⊥ED于P,那么在Rt△P1PD中,P1D>PD,
故當(dāng)點A的對稱點P落在線段ED上時,PD有最小值,(左圖)
而E在線段AB上,故當(dāng)E與B重合時,即EP=BP,此時PD取最小值.(右圖)
此時,AB=BP=8,
又 BD== ,
∴PD=BD-BP= -8.

(1)作CS⊥AB于點S,EG⊥DC,交于DC延長線于點G,利用矩形的性質(zhì)有AD=CS=GE=4,CD=AS=4,結(jié)合Rt△PGE,由折疊的性質(zhì)知PE=AE=5,由勾股定理得出相關(guān)的線段的長度,即可求得DP的長;
(2)當(dāng)點P落在梯形的內(nèi)部時,∠P=∠A=90°,四邊形PFAE是以EF為直徑的圓內(nèi)接四邊形,只有當(dāng)直徑EF最大時,且點A落在BD上時,PD最小,此時E與點B重合,由勾股定理得BD的長,從而求得PD= -8.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直角梯形紙片ABCD,AD⊥AB,AB=8,AD=CD=4,點E、F分別在線段AB、A精英家教網(wǎng)D上,將△AEF沿EF翻折,點A的落點記為P.
(1)當(dāng)AE=5,P落在線段CD上時,PD=
 
;
(2)當(dāng)P落在直角梯形ABCD內(nèi)部時,PD的最小值等于
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直角梯形紙片ABCD,AD⊥AB,AB=6,AD=CD=3,點E、F分別在線段AB、AD上,將△AEF沿EF翻折,點A的落點記為P.當(dāng)P落在直角梯形ABCD內(nèi)部時,PD的最小值等于
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直角梯形紙片ABCD中,∠DCB=90°,AD∥BC,將紙片折疊,使頂點B與頂點D重合,折痕為CF.
若AD=2,BC=5,則AF:FB的值為(  )
A、
1
2
B、
1
3
C、
2
5
D、
3
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•臨汾二模)如圖,直角梯形紙片ABCD中,AD∥BC,∠A=90°,∠C=30°.折疊紙片使BC經(jīng)過點D,點C落在點E處,BF是折痕,且BF=CF=8.則AB的長是
6
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•內(nèi)江模擬)如圖,直角梯形紙片ABCD,AD⊥AB,AD=CD=4,點E、F分別在線段AB、CD上,將△AEF沿EF翻折,點A落在線段CD上的點P處,若AE=5,則PF的長為( 。

查看答案和解析>>

同步練習(xí)冊答案