【題目】已知正方形ABCD中,點E在邊DC上,DE=2,EC=1(如圖所示)把線段AE繞點A旋轉,使點E落在直線BC上的點F處,則FC兩點的距離為______

【答案】15.

【解析】

根據(jù)正方形的性質可得AB=AD,ABC=D=90°,再根據(jù)旋轉的性質可得AF=AE,然后利用“HL”證明RtABFRtADE全等,根據(jù)全等三角形對應邊相等可得BF=DE,再求出正方形的邊長為3,然后分兩種情況討論求解.

如圖,

在正方形ABCD中,AB=AD,ABC=D=90°,

由旋轉的性質得,AF=AE,

RtABFRtADE中,

,

RtABFRtADE(HL),

BF=DE=2,

DE=2,EC=1,

∴正方形的邊長為2+1=3,

①點F在線段CB延長線上時,FC=BF+BC=3+2=5;

②當線段AE逆時針旋轉90°時,延長CD、D’F’交于點E’,

由勾股定理得,F’C=.

故答案為:5.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點A(4,0)B(0,2),點P(a,a)

1)當a2時,將AOB繞點P(a,a)逆時針旋轉90°DEF,點A的對應點為D,點O的對應點為E,點B的對應點為點F,在平面直角坐標系中畫出DEF,并寫出點D的坐標 ;

2)作線段AB關于P點的中心對稱圖形(點A、B的對應點分別是G、H),若四邊形ABGH是正方形,則a

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1的小正方形組成的網格中,ABC的三個頂點均在格點上,

請按要求完成下列各題:

(1)用2B鉛筆畫ADBC(D為格點),連接CD;

(2)線段CD的長為   ;

(3)請你在ACD的三個內角中任選一個銳角,若你所選的銳角是   ,則它所對應的正弦函數(shù)值是   ;

(4)若EBC中點,則tanCAE的值是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,矩形OABC擺放在平面直角坐標系中,點Ax軸上,點Cy軸上,OA3OC2,過點A的直線交矩形OABC的邊BC于點P,且點P不與點B、C重合,過點P作∠CPD=∠APB,PDx軸于點D,交y軸于點E

(1)若△APD為等腰直角三角形.

求直線AP的函數(shù)解析式;

x軸上另有一點G的坐標為(2,0),請在直線APy軸上分別找一點M、N,使△GMN的周長最小,并求出此時點N的坐標和△GMN周長的最小值.

(2)如圖2,過點EEFAPx軸于點F,若以AP、E、F為頂點的四邊形是平行四邊形,求直線PE的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A(–4,n),B(2,–4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)的圖象的兩個交點

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)求直線AB與x軸的交點C的坐標及AOB的面積;

3)求不等式的解集(請直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線 ABCD,直線 a 分別交 AB、CD 于點 E、F,點 M 在線段 EF 上,點 P 直線 CD 上的一個動點( P 不與點 F 重合)

(1)如圖 1,當點 P 在射線 FC 上移動時,∠FMP+∠FPM 與∠AEF 有什么數(shù)量關系? 請說明理由;

(2)如圖 2,當點 P 在射線 FD 上移動時,∠FMP+∠FPM 與∠AEF 有什么數(shù)量關系? 請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABC,O ABC 所在平面內的一點,連接 OB、OC,將∠ABO、∠ACO分別記為∠1、∠2

(1)如圖(1),當點 O 在圖中所示的位置時,∠1+∠2+∠A+∠O ;

(2)如圖(2),當點 O ABC 的內部時,∠1、∠2、∠A、∠OC四個角之間滿足怎樣 的數(shù)量關系?請寫出你的結論并說明理由;

(3)當點 O ABC 所在平面內運動時( O 不在三邊所在的直線上),由于所處的位 置不同,∠1、∠2、∠A、∠OC四個角之間滿足的數(shù)量關系還存在著與(1)(2) 中不同的結論,請在圖(3)中畫出一種不同的示意圖,并直接寫出相應的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABBC于點B,CDBC于點C,AB=4,CD=6,BC=14,PBC邊上一點,試問BP為何值時,以A,B,P為頂點的三角形與以P,C,D為頂點的三角形相似?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC的頂點A在原點,BC坐標分別為B(3,0),C(2,2),ABC向左平移1個單位后再向下平移2單位,可得到A′B′C′.

(1)請畫出平移后的A′B′C′的圖形;

(2)寫出A′B′C′各個頂點的坐標;

(3)ABC的面積.

查看答案和解析>>

同步練習冊答案