如圖,已知反比例函數(shù)的圖象與一次函數(shù)的圖象交于、兩點,

(1)求反比例函數(shù)和一次函數(shù)的關(guān)系式;

(2)在直線上是否存在一點,使,若存在,求點坐標;若不存在,請說明理由.

 

【答案】

解:(1) ∵雙曲線過點

∵雙曲線過點

由直線過點,解得

∴反比例函數(shù)關(guān)系式為,一次函數(shù)關(guān)系式為.

(2)存在符合條件的點,.理由如下:

,如右圖,設(shè)直線軸、軸分別相交于點,過點作軸于點,連接,則,

,再由,

從而,因此,點的坐標為.

【解析】(1)先根據(jù)反比例函數(shù)求出點A的坐標,再由A、B的坐標根據(jù)待定系數(shù)法即可求得一次函數(shù)解析式;

(2)由,根據(jù)對應(yīng)邊成比例即可求出AP的長,再根據(jù)一次函數(shù)求出與坐標軸的交點坐標,即得AC、CD、DB、PC的長,再由求得CE、PE的長即可求得點P的坐標。

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知反比例函數(shù)y=
m
x
圖象與一次函數(shù)y=kx+b的圖象均經(jīng)過A(-1,4)和B(a,
4
5
)兩點,
(1)求B點的坐標及兩個函數(shù)的解析式;
(2)若一次函數(shù)y=kx+b的圖象與x軸交于點C,求C點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知反比例函數(shù)y=
kx
(k>0)的圖象經(jīng)過點A(2,m),過點A作AB⊥x軸于點B,且S△AOB=3.若一次函數(shù)y=ax+1的圖象經(jīng)過點A,并且與x軸相交于點C,求AO:AC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知反比例函數(shù)y=
kx
的圖象與一次函數(shù)y=ax+b的圖象交于M(2,m)和N(-1,-4)兩點.
(1)求這兩個函數(shù)的解析式;
(2)求△MON的面積;
(3)請判斷點P(4,1)是否在這個反比例函數(shù)的圖象上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知反比例函數(shù)y1=
kx
和一次函數(shù)y2=ax+b的圖象相交于點A和點D,且點A的橫坐標為1,點D的縱坐標為-1.過點A作AB⊥x軸于點B,△AOB的面積為1.
(1)求反比例函數(shù)和一次函數(shù)的解析式.
(2)若一次函數(shù)y2=ax+b的圖象與x軸相交于點C,求∠ACO的度數(shù).
(3)結(jié)合圖象直接寫出:當y1>y2時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知反比例函數(shù)y=
k
x
的圖象經(jīng)過第二象限內(nèi)的點A(-1,m),AB⊥x軸于點B,△AOB的面積為2.若直線y=ax+b經(jīng)過點A,并且經(jīng)過反比例函數(shù)y=
k
x
的圖象上另一點C(n,一2).
(1)求直線y=ax+b的解析式;
(2)設(shè)直線y=ax+b與x軸交于點M,求AM的長;
(3)在雙曲線上是否存在點P,使得△MBP的面積為8?若存在請求P點坐標;若不存在請說明理由.

查看答案和解析>>

同步練習冊答案