如圖,在等邊△ABC中,AD⊥BC于點(diǎn)D,一個(gè)直徑與AD相等的圓與BC相切于點(diǎn)E,與AB相切于點(diǎn)F,連接EF。

小題1:判斷EF與AC的位置關(guān)系(不必說(shuō)明理由);
小題2:如圖,過(guò)E作BC的垂線,交圓于G,連接AC,判斷四邊形ADEG的形狀,并說(shuō)明理由。

小題3:確定圓心O的位置,并說(shuō)明理由。

小題1:EF//AC.
小題2:四邊形ADEG為矩形.
理由: ∵EG⊥BC, ∴AD//EG, 即四邊形ADEG為矩形.
小題3:圓心O就是AC與EG的交點(diǎn).
理由: 連接FG, 由(2)可知EG為直徑, ∴FG⊥EF,
又由(1)可知, EF//AC, ∴AC⊥FG,
又∵四邊形ADEG為矩形, ∴EG⊥AG, 則AG是已知圓的切線.
而AB也是已知圓的切線, AF=AG,
∴AC是FG的垂直平分線, 故AC必過(guò)圓心,
因此, 圓心O就是AC與EG的交點(diǎn).
說(shuō)明: 也可據(jù)△AGO≌△AFO進(jìn)行說(shuō)理.
 略
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直角梯形ABCD中,ADBC,∠A=90o,∠C=60°,AD=3cm,BC=9cm.⊙O1的圓心O1從點(diǎn)A開(kāi)始沿折線A—D—C以1cm/s的速度向點(diǎn)C運(yùn)動(dòng),⊙O2的圓心O2從點(diǎn)B開(kāi)始沿BA邊以cm/s的速度向點(diǎn)A運(yùn)動(dòng),⊙O1半徑為2cm,⊙O2的半徑為4cm,若O1、O2分別從點(diǎn)A、點(diǎn)B同時(shí)出發(fā),運(yùn)動(dòng)的時(shí)間為ts。

小題1:(1)設(shè)經(jīng)過(guò)t秒,⊙O2與腰CD相切于點(diǎn)F,過(guò)點(diǎn)F畫(huà)EF⊥DC,交AB于E,則EF=          
小題2:(2)過(guò)E畫(huà)EG∥BC,交DC于G,畫(huà)GH⊥BC,垂足為H.則∠FEG=             。
小題3:(3)求此時(shí)t的值。
小題4:(4)在0<t≤3范圍內(nèi),當(dāng)t為何值時(shí),⊙O1與⊙O2外切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

小紅同學(xué)要用紙板制作一個(gè)高4cm,底面周長(zhǎng)是6π cm的圓錐形漏斗模型,若不計(jì)接縫和損耗,則她所需紙板的面積是                             ( ▲ )
A.12πB.15πcm2C.18πcm2D.24πcm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在中,,經(jīng)過(guò)點(diǎn)且與邊相切的動(dòng)圓與分別相交于點(diǎn),則線段長(zhǎng)度的最小值()
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知⊙的半徑長(zhǎng)為,弦長(zhǎng)為平分,交于點(diǎn).交于點(diǎn),求的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖是一條水平鋪設(shè)的直徑為2米的管道橫截面,其水面寬1.6米。則管道中水最深        米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖所示,邊長(zhǎng)為1的小正方形構(gòu)成的網(wǎng)格中,半徑為1的⊙O的圓心O在格點(diǎn)上,則∠AED的正切值等于        

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題8分)如圖,PA、PB是⊙O的切線,CD切⊙O于點(diǎn)E,△PCD的周長(zhǎng)為12,
APB=60°.
求:(1)PA的長(zhǎng);(2)∠COD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

是⊙O的直徑,切⊙O交⊙O,連.若,則的度數(shù)為             

查看答案和解析>>

同步練習(xí)冊(cè)答案