【題目】如圖,在平面直角坐標(biāo)系中,A(-1,5),B-1,0),C-43.

1)在圖中作出ABC關(guān)于y軸的對(duì)稱(chēng)圖形A1B1C1;
2)寫(xiě)出點(diǎn)A1、B1、C1的坐標(biāo);
3)在y軸上畫(huà)出點(diǎn)P,使PA+PC最;
4)求六邊形AA1C1B1BC的面積..

【答案】1作圖見(jiàn)解析;(2A11,5)、B110)、C143);(3)見(jiàn)解析;(425.

【解析】試題分析:1)根據(jù)題意畫(huà)出A1B1C1即可;

2)根據(jù)A1B1C1在坐標(biāo)系中的位置即可得出各點(diǎn)坐標(biāo);

3)連接A1Cy軸交于點(diǎn)P,則P點(diǎn)即為所求;

4)根據(jù)S六邊形AA1C1B1BC=SABC+SA1B1C1+S矩形AA1C1B1B即可得出結(jié)論.

試題解析:(1)如圖所示;

2)由圖可知,A11,5)、B11,0)、C14,3);

3)連接A1Cy軸交于點(diǎn)P,則P點(diǎn)即為所求;

4S六邊形AA1C1B1BC=SABC+SA1B1C1+S矩形AA1C1B1B

=×5×3+×5×3+2×5

=15+10

=25

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,AB=AC,點(diǎn)D是射線(xiàn)CB上的一動(dòng)點(diǎn)(不與點(diǎn)B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,連接CE

(1)如圖1,當(dāng)點(diǎn)D在線(xiàn)段CB上,且∠BAC=90°時(shí),那么∠DCE= 度;

(2)設(shè)∠BAC= ,∠DCE=

① 如圖2,當(dāng)點(diǎn)D在線(xiàn)段CB上,∠BAC≠90°時(shí),請(qǐng)你探究之間的數(shù)量關(guān)系,并證明你的結(jié)論;

② 如圖3,當(dāng)點(diǎn)D在線(xiàn)段CB的延長(zhǎng)線(xiàn)上,∠BAC≠90°時(shí),請(qǐng)將圖3補(bǔ)充完整,并直接寫(xiě)出此時(shí)之間的數(shù)量關(guān)系(不需證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,△DEF是由△ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)180°后形成的圖形;

(1)請(qǐng)你指出圖中所有相等的線(xiàn)段;

(2)圖中哪些三角形可以被看成是關(guān)于點(diǎn)O成中心對(duì)稱(chēng)關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線(xiàn)軸交于點(diǎn)A,點(diǎn)B(1,0),與軸交于點(diǎn)C(0,﹣3),點(diǎn)M是其頂點(diǎn).

(1)求拋物線(xiàn)解析式;

(2)第一象限拋物線(xiàn)上有一點(diǎn)D,滿(mǎn)足∠DAB=45°,求點(diǎn)D的坐標(biāo);

(3)直線(xiàn) (﹣3<<﹣1)與x軸相交于點(diǎn)H.與線(xiàn)段AC,AM和拋物線(xiàn)分別相交于點(diǎn)E,F(xiàn),P.證明線(xiàn)段HE,EF,F(xiàn)P總能組成等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某蔬菜生產(chǎn)基地在氣溫較低時(shí),用裝有恒溫系統(tǒng)的大棚栽培一種在自然光明且溫度為18的條件下生長(zhǎng)最快的新品種.如圖,是某天恒溫系統(tǒng)從開(kāi)啟到關(guān)閉及關(guān)閉后,大棚內(nèi)溫度y()隨時(shí)間x(小時(shí))變化的函數(shù)圖象,其中BC段足雙曲線(xiàn) 的一部分,請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:

(1)恒溫系統(tǒng)這天保持大棚內(nèi)溫度18的時(shí)間有多少小時(shí)?

(2)k值;

(3)當(dāng)x=15時(shí),大棚內(nèi)的溫度約為多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一副直角三角板如圖放置,點(diǎn)C在FD的延長(zhǎng)線(xiàn)上,ABCF,F=ACB=90°,E=45°,A=60°,AC=10,試求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)平面內(nèi),二次函數(shù)圖象的頂點(diǎn)為A1,﹣4),且過(guò)點(diǎn)B3,0).

1)求該二次函數(shù)的解析式;

2)將該二次函數(shù)圖象向右平移幾個(gè)單位,可使平移后所得圖象經(jīng)過(guò)坐標(biāo)原點(diǎn)?并直接寫(xiě)出平移后所得圖象與x軸的另一個(gè)交點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題探究

)如圖①,已知正方形的邊長(zhǎng)為,點(diǎn)分別是邊、上兩點(diǎn),且.連接,交于點(diǎn).猜想的位置關(guān)系,并證明你的結(jié)論.

)如圖②,已知正方形的邊長(zhǎng)為,點(diǎn)分別從點(diǎn)、同時(shí)出發(fā),以相同的速度沿、方向向終點(diǎn)運(yùn)動(dòng),連接,交于點(diǎn),求周長(zhǎng)的最大值.

問(wèn)題解決

)如圖③,為邊長(zhǎng)為的菱形的對(duì)角線(xiàn), .點(diǎn)分別從點(diǎn)、同時(shí)出發(fā);以相同的速度沿向終點(diǎn)運(yùn)動(dòng),連接,交于點(diǎn),求周長(zhǎng)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠A=60°,BDCD分別平分∠ABC、∠ACBM、NQ分別在DB、DCBC的延長(zhǎng)線(xiàn)上,BECE分別平分∠MBC、∠BCNBF、CF分別平分∠EBC、∠ECQ,則∠F=( ).

A. 60° B. 45° C. 30° D. 15°

查看答案和解析>>

同步練習(xí)冊(cè)答案