【題目】如圖,直線y=x+4x軸相交于點(diǎn)A,與y軸相交于點(diǎn)B

1)求△AOB的面積;

2)過(guò)B點(diǎn)作直線BCx軸相交于點(diǎn)C,若△ABC的面積是16,求點(diǎn)C的坐標(biāo).

【答案】(1)12;(2)(-14,0)或(20).

【解析】

1)分別把x=0y=0代入y=x+4,解之,得到點(diǎn)B和點(diǎn)A的坐標(biāo),根據(jù)三角形的面積公式,計(jì)算求值即可,

2)根據(jù)過(guò)B點(diǎn)作直線BCx軸相交于點(diǎn)C,若△ABC的面積是16”,結(jié)合點(diǎn)B的坐標(biāo),求出線段AC的距離,即可得到答案.

解:(1)把x=0代入y=x+4得:

y=4,

即點(diǎn)B的坐標(biāo)為:(0,4),

y=0代入y=x+4得:

x+4=0,

解得:x=-6,

即點(diǎn)A的坐標(biāo)為:(-60),

SAOB==12,

即△AOB的面積為12

2)根據(jù)題意得:

點(diǎn)BAC的距離為4,

SABC==16,

解得:AC=8

即點(diǎn)C到點(diǎn)A的距離為8,

-6-8=-14,-6+8=2

即點(diǎn)C的坐標(biāo)為:(-14,0)或(20).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC是等腰直角三角形,∠C=90°,點(diǎn)DAB的中點(diǎn),點(diǎn)E,F(xiàn)分別在BC,AC上,且AF=CE.

(1)填空:∠A的度數(shù)是   

(2)探究DEDF的關(guān)系,并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)Aa,0),點(diǎn)B2a0),且AB的左邊,點(diǎn)C1,﹣1),連接ACBC,若在AB,BC,AC所圍成區(qū)域內(nèi)(含邊界),橫坐標(biāo)和縱坐標(biāo)都為整數(shù)的點(diǎn)的個(gè)數(shù)為4個(gè),那么a的取值范圍為(。

A. 1a≤0B. 0≤a1C. 1a1D. 2a2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:點(diǎn)A、CB不在同一條直線上,ADBE

1)如圖①,當(dāng)∠A=48°,∠B=128°時(shí),求∠C的度數(shù);

2)如圖②,AQBQ分別為∠DAC、∠EBC的平分線所在直線,試探究∠C與∠AQB的數(shù)量關(guān)系;

3)如圖③,在(2)的前提下,且有ACQB,QPPB,直接寫出∠DAC:∠ACB:∠CBE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,對(duì)角線AC、BD交于點(diǎn)OAB=AC,點(diǎn)EBD上一點(diǎn),且AE=AD,∠EAD=BAC

1)求證:∠ABD=ACD;

2)若∠ACB=62°,求∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲.乙兩同學(xué)騎自行車從A地沿同一條路到B,已知乙比甲先出發(fā),他們離出發(fā)地的距離Skm)和騎行時(shí)間th)之間的函數(shù)關(guān)系如圖1所示,給出下列說(shuō)法:①他們都騎行了20km;②乙在途中停留了0.5h;③甲.乙兩人同時(shí)到達(dá)目的地;④相遇后,甲的速度小于乙的速度

根據(jù)圖象信息,以上說(shuō)法正確的有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】完成下列證明:

如圖,已知ADBC,EFBC,1=2.

求證:DGBA.

證明:ADBC,EFBC(已知)

∴∠EFB=ADB=90°(

EFAD(

∴∠1=BAD(

∵∠1=2(已知)

(等量代換)

DGBA.(

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小新家、小華家和書店依次在東風(fēng)大街同一側(cè)(忽略三者與東風(fēng)大街的距離).小新小華兩人同時(shí)各自從家出發(fā)沿東風(fēng)大街勻速步行到書店買書,已知小新到達(dá)書店用了20分鐘,小華的步行速度是40/分,設(shè)小新、小華離小華家的距離分別為y1(米)、y2(米),兩人離家后步行的時(shí)間為x(分),y1x的函數(shù)圖象如圖所示,根據(jù)圖象解決下列問(wèn)題:

(1)小新的速度為_____/分,a=_____;并在圖中畫出y2x的函數(shù)圖象

(2)求小新路過(guò)小華家后,y1x之間的函數(shù)關(guān)系式.

(3)直接寫出兩人離小華家的距離相等時(shí)x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖為放置在水平桌面上的臺(tái)燈的平面示意圖,可伸縮式燈臂AO長(zhǎng)為40cm,與水平面所形成的夾角∠OAM恒為75°(不受燈臂伸縮的影響),由光源O射出的光線沿?zé)粽中纬晒饩OC,OB與水平面所形成的夾角∠OCA,∠OBA分別為90°和30°,

(1)求該臺(tái)燈照亮桌面的寬度BC(不考慮其他因素,結(jié)果精確到1cm.溫馨提示:sin75°≈0.97,cos75°≈0.26, ≈1.73)
(2)若燈臂最長(zhǎng)可伸長(zhǎng)至60cm,不調(diào)整燈罩的角度,能否讓臺(tái)燈照亮桌面85cm的寬度?

查看答案和解析>>

同步練習(xí)冊(cè)答案