【題目】如圖,AB為⊙O的直徑,弦CD⊥AB于H,E為AB延長線上一點(diǎn),CE交⊙O于點(diǎn)F
(1)求證:BF平分∠DFE;
(2)若EF=DF,BE=5,AH=,求⊙O的半徑.
【答案】(1)見解析;(2).
【解析】
(1)根據(jù)圓內(nèi)接四邊形性質(zhì)和圓周角定理求出∠EFB=∠CDB,∠BCD=∠DFB,根據(jù)垂徑定理求出CH=DH,求出BC=BD,根據(jù)等腰三角形性質(zhì)求出∠BCD=∠CDB,求出∠EFB=∠DFB即可;
(2)根據(jù)全等三角形的判定求出△DFB≌△EFB,根據(jù)全等三角形的性質(zhì)求出BD=BE=5,證△DHB∽△ADB,根據(jù)相似得出比例式,代入求出即可.
(1)證明:∵C、D、B、F四點(diǎn)共圓,
∴∠EFB=∠CDB,∠BCD=∠DFB,
∵CD⊥OA,OA過O,
∴CH=DH,
∴BC=BD,
∴∠BCD=∠CDB,
∴∠EFB=∠DFB,
∴BF平分∠DFE;
(2)解:設(shè)⊙O的半徑為R,
∵在△DFB和△EFB中 ,
∴△DFB≌△EFB(SAS),
∴BD=BE,
∵BE=5,
∴BD=5,
∵AB為⊙O直徑,CD⊥AB,
∴∠ADB=∠DHB=90°,
∵∠DBH=∠ABD,
∴△DHB∽△ADB,
∴,
∵AH=,BD=5,AB=2R,BH=2R﹣,
∴,
解得:R=,R=﹣2(舍去),
即⊙O的半徑是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的圖象與軸交于點(diǎn)和點(diǎn),與軸交于點(diǎn),直線交拋物線于點(diǎn)和點(diǎn),連接.
求點(diǎn)坐標(biāo).
求的面積.
直接寫出當(dāng)時(shí),自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,先將拋物線y=2x2﹣4x關(guān)于y軸作軸對(duì)稱變換,再將所得的拋物線,繞它的頂點(diǎn)旋轉(zhuǎn)180°,那么經(jīng)兩次變換后所得的新拋物線的函數(shù)表達(dá)式為( 。
A.y=﹣2x﹣4xB.y=﹣2x+4x
C.y=﹣2x﹣4x﹣4D.y=﹣2x+4x+4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,每一幅圖中均含有若干個(gè)正方形,第1幅圖中有1個(gè)正方形;第2幅圖中有1+4=5個(gè)正方形;第三幅圖中有1+4+9=14個(gè)正方形;…按這樣的規(guī)律下去,第4幅圖中有_____個(gè)正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O,AB是直徑,AB=4,弦CD⊥AB且過OB的中點(diǎn),P是劣弧BC上一動(dòng)點(diǎn),DF垂直AP于F,則P從C運(yùn)動(dòng)到B的過程中,F運(yùn)動(dòng)的路徑長度( 。
A.πB.C.πD.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(1,0),(0,2),某拋物線的頂點(diǎn)坐標(biāo)為D(-1,1)且經(jīng)過點(diǎn)B,連接AB,直線AB與此拋物線的另一個(gè)交點(diǎn)為C,則S△BCD:S△ABO=( )
A. 8:1B. 6:1C. 5:1D. 4:1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k≠0)與反比例函數(shù)y=(m≠0)的圖象交于第二、四象限A、B兩點(diǎn),過點(diǎn)A作AD⊥x軸于D,AD=4,sin∠AOD=,且點(diǎn)B的坐標(biāo)為(n,-2).
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)E是y軸上一點(diǎn),且△AOE是等腰三角形,請(qǐng)直接寫出所有符合條件的E點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象經(jīng)過三點(diǎn).
(1)觀察圖象,寫出三點(diǎn)的坐標(biāo),并求出拋物線解析式;
(2)觀察圖象,當(dāng)取何值時(shí),?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則在下列各式子:①abc>0;②a+b+c>0;③a+c>b;④2a+b=0;⑤=b2-4ac<0中,成立的式子有( )
A. ②④⑤ B. ②③⑤
C. ①②④ D. ①③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com