【題目】如圖,反比例函數(shù)y=(x>0)的圖象與直線y=x交于點(diǎn)M,∠AMB=90°,其兩邊分別與兩坐標(biāo)軸的正半軸交于點(diǎn)A,B,四邊形OAMB的面積為6.

(1)求k的值;

(2)點(diǎn)P在反比例函數(shù)y=(x>0)的圖象上,若點(diǎn)P的橫坐標(biāo)為3,∠EPF=90°,其兩邊分別與x軸的正半軸,直線y=x交于點(diǎn)E,F(xiàn),問是否存在點(diǎn)E,使得PE=PF?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】(1)6;(2)E(4,0);E(6,0).

【解析】試題分析:(1)過點(diǎn)M作MC⊥x軸于點(diǎn)C,MD⊥y軸于點(diǎn)D,根據(jù)AAS證明△AMC≌△BMD,那么S四邊形OCMD=S四邊形OAMB=6,根據(jù)反比例函數(shù)比例系數(shù)k的幾何意義得出k=6;

(2)先根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征求得點(diǎn)P的坐標(biāo)為(3,2).再分兩種情況進(jìn)行討論:①如圖2,過點(diǎn)P作PG⊥x軸于點(diǎn)G,過點(diǎn)F作FH⊥PG于點(diǎn)H,交y軸于點(diǎn)K.根據(jù)AAS證明△PGE≌△FHP,進(jìn)而求出E點(diǎn)坐標(biāo);②如圖3,同理求出E點(diǎn)坐標(biāo).

試題解析:(1)如圖1,過點(diǎn)M作MC⊥x軸于點(diǎn)C,MD⊥y軸于點(diǎn)D,

則∠MCA=∠MDB=90°,∠AMC=∠BMD,MC=MD,

∴△AMC≌△BMD,

∴S四邊形OCMD=S四邊形OAMB=6,

∴k=6;

(2)存在點(diǎn)E,使得PE=PF.

由題意,得點(diǎn)P的坐標(biāo)為(3,2).

①如圖2,過點(diǎn)P作PG⊥x軸于點(diǎn)G,過點(diǎn)F作FH⊥PG于點(diǎn)H,交y軸于點(diǎn)K.

∵∠PGE=∠FHP=90°,∠EPG=∠PFH,PE=PF,

∴△PGE≌△FHP,

∴PG=FH=2,F(xiàn)K=OK=3-2=1,GE=HP=2-1=1,

∴OE=OG+GE=3+1=4,

∴E(4,0);

②如圖3,過點(diǎn)P作PG⊥x軸于點(diǎn)G,過點(diǎn)F作FH⊥PG于點(diǎn)H,交y軸于點(diǎn)K.

∵∠PGE=∠FHP=90°,∠EPG=∠PFH,PE=PF,

∴△PGE≌△FHP,

∴PG=FH=2,F(xiàn)K=OK=3+2=5,GE=HP=5-2=3,

∴OE=OG+GE=3+3=6,

∴E(6,0).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由四舍五入法得到的近似數(shù)6.8×103,下列說法中正確的是( )

A.精確到十分位,有2個(gè)有效數(shù)字 B.精確到個(gè)位,有2個(gè)有效數(shù)字

C.精確到百位,有2個(gè)有效數(shù)字 D.精確到千位,有4個(gè)有效數(shù)字

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】方程2x﹣5=0的解為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若2a+6的值是正數(shù),則a的取值范圍是( )

A. a>0 B. a>3 C. a>-3 D. a<-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果等腰三角形的兩邊長分別是4和5,則它的周長是(
A.13
B.14
C.13或14
D.無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(xa)(xb)x26x,則ab的值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】簡便計(jì)算:1.992+1.99×0.01

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】減少稅收,適當(dāng)補(bǔ)貼政策的影響,某市居民購房熱情大幅提高.據(jù)調(diào)查,2016年1月該市宏鑫房地產(chǎn)公司的住房銷售量為100套,3月份的住房銷售量為169套.假設(shè)該公司這兩個(gè)月住房銷售量的增長率為x,根據(jù)題意所列方程為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】)我校的飲水機(jī)接通電源就進(jìn)入自動(dòng)程序,開機(jī)加熱時(shí)每分鐘上升10℃,加熱到100℃,停止加熱,水溫開始下降,此時(shí)水溫(℃)與開機(jī)后用時(shí)(min)成反比例關(guān)系.直至水溫降至20℃時(shí)自動(dòng)開機(jī)加熱,重復(fù)上述自動(dòng)程序.若在水溫為20℃時(shí),接通電源后,水溫y(℃)和時(shí)間(min)的關(guān)系如圖,

1分別求出直線及雙曲線的解析式.

2求飲水機(jī)接通電源到下一次開機(jī)的間隔時(shí)間.

3在(2)中的時(shí)間段內(nèi),要想喝到超過50℃的水,有多長時(shí)間?

查看答案和解析>>

同步練習(xí)冊(cè)答案