【題目】已知在紙面上有一數(shù)軸(如圖),折疊紙面.
(1)若表示﹣1的點與表示3的點重合,回答以下問題:
①表示5的點與表示數(shù)_________的點重合;
②若數(shù)軸上A、B兩點之間的距離為9(A在B的左側(cè)),且A、B兩點經(jīng)折疊后重合,求A、B兩點表示的數(shù)是多少?
(2)若點D表示的數(shù)為x,則當(dāng)x為_______時,|x+1|與|x﹣2|的值相等.
【答案】(1)①-3;②A、B兩點表示的數(shù)分別是﹣3.5,5.5;(2)0.5.
【解析】
(1)由表示-1的點與表示3的點重合,可確定對稱點是表示1的點,①表示5的點與對稱點距離為4,與左側(cè)與對稱點距離為4的點重合,由此即可解答;②由題意可得,A、B兩點距離對稱點的距離為4.5,由此即可解答;(2)要使|x+1|與|x-2|的值相等,只有x+1和x-2互為相反數(shù)的情況,由此列式求解即可.
(1)由表示﹣1的點與表示3的點重合,可確定對稱點是表示1的點,則:
①表示5的點與對稱點距離為4,則重合點應(yīng)該是左側(cè)與對稱點距離為4的點,即﹣3;
②由題意可得,A、B兩點距離對稱點的距離為9÷2=4.5,
∵對稱點是表示1的點,
∴A、B兩點表示的數(shù)分別是﹣3.5,5.5.
(2)由題意得,x+1=2﹣x,
解得x=0.5.
故填:0.5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤被平均分成五個扇形,五個扇形內(nèi)部分別標(biāo)有數(shù)字.﹣2、3、﹣4、5.若將轉(zhuǎn)盤轉(zhuǎn)動兩次,每一次停止轉(zhuǎn)動后,指針指向的扇形內(nèi)的數(shù)字分別記為m,n(當(dāng)指針指在邊界線時視為無效,重轉(zhuǎn)),從而確定一個點的坐標(biāo)為A(m,n).請用列表或者畫樹狀圖的方法求出所有可能得到的點A的坐標(biāo),并求出點A在第一象限內(nèi)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,折線AC﹣BC是一條公路的示意圖,AC=8km,甲騎摩托車從A地沿這條公路到B地,速度為40km/h,乙騎自行車從C地到B地,速度為10km/h,兩人同時出發(fā),結(jié)果甲比乙早到6分鐘.
(1)求這條公路的長;
(2)設(shè)甲乙出發(fā)的時間為t小時,求甲沒有超過乙時t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算題
(1)(+16)+(-25)-(-24)+(-32)
(2)(-26.54)-︱-6.4︱+18.54+6.4
(3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD為正方形,AB=,點E為對角線AC上一動點,連接DE,過點E作EF⊥DE.交射線BC于點F,以DE、EF為鄰邊作矩形DEFG,連接CG.
①求證:矩形DEFG是正方形;
②探究:CE+CG的值是否為定值?若是,請求出這個定值;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了貫徹教育部關(guān)于中小學(xué)生“每天鍛煉一小時”的要求,某市教育局做了一次隨機抽樣調(diào)查,其內(nèi)容是:(1)學(xué)生每天鍛煉時間是否達(dá)到1小時;(2)學(xué)生每天鍛煉時間未達(dá)到1小時的原因.隨機調(diào)查了600名學(xué)生,把所得的數(shù)據(jù)制成了如下的扇形統(tǒng)計圖和條形統(tǒng)計圖(不完整)
根據(jù)圖示,回答以下問題:
(1)每天鍛煉時間達(dá)到1小時的人數(shù)占被調(diào)查總?cè)藬?shù)的百分比是;
每天鍛煉時間未達(dá)到1小時的人數(shù)占被調(diào)查總?cè)藬?shù)的百分比是;
每天鍛煉時間未達(dá)到1小時的人數(shù)為人,其中原因是“時間被擠占”的人數(shù)是人;
(2)補全扇形統(tǒng)計圖和條形統(tǒng)計圖;
(3)若該市現(xiàn)有中小學(xué)生約27萬人,據(jù)此調(diào)查,可估計今年該市中小學(xué)生每天鍛煉未達(dá)到1小時的學(xué)生約有多少萬人?
(4)從這次接受調(diào)查的學(xué)生中,隨機抽取一名學(xué)生的“每天鍛煉一小時”的情況,回答內(nèi)容為“時間被擠占”的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠ABC=30°.點D是直線BC上的一個動點,連接AD,并以AD為邊在AD的右側(cè)作等邊△ADE.
(1)如圖①,當(dāng)點E恰好在線段BC上時,請判斷線段DE和BE的數(shù)量關(guān)系,并結(jié)合圖①證明你的結(jié)論;
(2)當(dāng)點E不在直線BC上時,連接BE,其它條件不變,(1)中結(jié)論是否成立?若成立,請結(jié)合圖②給予證明;若不成立,請直接寫出新的結(jié)論;
(3)若AC=3,點D在直線BC上移動的過程中,是否存在以A、C、D、E為頂點的四邊形是梯形?如果存在,直接寫出線段CD的長度;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com