某市對火車站進行了大規(guī)模的改建,改建后的火車站除原有的普通售票窗口外,新增了自動打印車票的無人售票窗口.某日,從早8點開始到上午11點,每個普通售票窗口售出的車票數(shù)y1(張)與售票時間x(小時)的正比例函數(shù)關(guān)系滿足圖①中的圖象,每個無人售票窗口售出的車票數(shù)y2(張)與售票時間x(小時)的函數(shù)關(guān)系滿足圖②中的圖象.
(1)圖②中圖象的前半段(含端點)是以原點為頂點的拋物線的一部分,根據(jù)圖中所給數(shù)據(jù)確定拋物線的表達(dá)式為   ,其中自變量x的取值范圍是   ;
(2)若當(dāng)天共開放5個無人售票窗口,截至上午9點,兩種窗口共售出的車票數(shù)不少于1450張,則至少需要開放多少個普通售票窗口?
(3)上午10點時,每個普通售票窗口與每個無人售票窗口售出的車票數(shù)恰好相同,試確定圖②中圖象的后半段一次函數(shù)的表達(dá)式.
(1)y=60x2;0≤x≤。
(2)至少需要開放15個普通售票窗口。
(3)y=50x+60。

試題分析:(1)設(shè)函數(shù)的解析式為y=ax2,
把點(1,60)代入解析式得:a=60,則函數(shù)解析式為:y=60x2()。
由圖可知,自變量x的取值范圍是0≤x≤
(2)設(shè)需要開放x個普通售票窗口,根據(jù)售出車票不少于1450,列出不等式解不等式,求最小整數(shù)解即可。
(3)求出普通窗口的函數(shù)解析式,從而求出10點時售出的票數(shù),和無人售票窗口當(dāng)x=時,y的值,然后把運用待定系數(shù)法求解析式即可。
解:(1)y=60x2;0≤x≤。
(2)設(shè)需要開放x個普通售票窗口,
由題意得,80x+60×5≥1450,解得:x≥。
∵x為整數(shù),∴x=15。
∴至少需要開放15個普通售票窗口。
(3)設(shè)普通售票的函數(shù)解析式為y=kx,
把點(1,80)代入得:k=80,
∴普通售票的函數(shù)解析式為y=80x。
∵10點時是x=2,∴當(dāng)x=2時,y=160。
∴上午10點普通窗口售票為160張。
由(1)得,當(dāng)x=時,y=135;
又∵上午10點時,每個普通售票窗口與每個無人售票窗口售出的車票數(shù)恰好相同,
∴圖②中的一次函數(shù)過點(,135),(2,160)。
設(shè)一次函數(shù)的解析式為:y=mx+n,
把點的坐標(biāo)代入得:,解得:。
∴圖②中圖象的后半段一次函數(shù)的表達(dá)式為y=50x+60。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角梯形AOCB中,AB∥OC,∠AOC=90°,AB=1,AO=2,OC=3,以O(shè)為原點,OC、OA所在直線為軸建立坐標(biāo)系.拋物線頂點為A,且經(jīng)過點C.點P在線段AO上由A向點O運動,點O在線段OC上由C向點O運動,QD⊥OC交BC于點D,OD所在直線與拋物線在第一象限交于點E.

(1)求拋物線的解析式;
(2)點E′是E關(guān)于y軸的對稱點,點Q運動到何處時,四邊形OEAE′是菱形?
(3)點P、Q分別以每秒2個單位和3個單位的速度同時出發(fā),運動的時間為t秒,當(dāng)t為何值時,PB∥OD?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC的頂點坐標(biāo)分別為A(﹣6,0),B(4,0),C(0,8),把△ABC沿直線BC翻折,點A的對應(yīng)點為D,拋物線y=ax2﹣10ax+c經(jīng)過點C,頂點M在直線BC上.

(1)證明四邊形ABCD是菱形,并求點D的坐標(biāo);
(2)求拋物線的對稱軸和函數(shù)表達(dá)式;
(3)在拋物線上是否存在點P,使得△PBD與△PCD的面積相等?若存在,直接寫出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直線y=x與拋物線交于A、B兩點.

(1)求交點A、B的坐標(biāo);
(2)記一次函數(shù)y=x的函數(shù)值為y1,二次函數(shù)的函數(shù)值為y2.若y1>y2,求x的取值范圍;
(3)在該拋物線上存在幾個點,使得每個點與AB構(gòu)成的三角形為等腰三角形?并求出不少于3個滿足條件的點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,是二次函數(shù)y=ax2+bx+c(a≠0)的圖象的一部分,
給出下列命題:
①abc<0;②b>2a;③a+b+c=0
④ax2+bx+c=0的兩根分別為﹣3和1;
⑤8a+c>0.其中正確的命題是               

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(x1,0)、(2,0),且﹣2<x1<﹣1,與y軸正半軸的交點在(0,2)的下方,則下列結(jié)論:
①abc<0;②b2>4ac;③2a+b+1<0;④2a+c>0.
則其中正確結(jié)論的序號是
A.①②B.②③C.①②④D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+3與y軸交于點A,過點A與x軸平行的直線交拋物線于點B、C,則BC的長值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

由示意圖可見,拋物線y=x2 +px+q   ①若有兩點A(a,yl)、B(b,y2)(其中a<b)在x軸下方,則拋物線必與x軸有兩個交點C(x1,O)、D(x2,O)(其中xl<x2),且滿足xl<a<b<x2.當(dāng)A(1,- 2.005),且xl、x2均為整數(shù)時,求二次函數(shù)的表達(dá)式,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線的開口向下,頂點坐標(biāo)為(2,-3),那么該拋物線有(   )
A.最小值 -3B.最大值-3 C.最小值2D.最大值2

查看答案和解析>>

同步練習(xí)冊答案