精英家教網 > 初中數學 > 題目詳情
9、已知⊙O1和⊙O2的半徑分別為拋物線y=x2-7x+10與x軸兩個交點的橫坐標,且這兩圓相切,則兩圓的圓心距O1O2為(  )
分析:由題意⊙O1和⊙O2的半徑分別為拋物線y=x2-7x+10與x軸兩個交點的橫坐標,得方程x2-7x+10=0解出方程,得到兩圓的半徑,已知兩圓相切,分兩種情況相外切和相內切,從而求出兩圓的圓心距.
解答:解:令y=0,得方程x2-7x+10=0,
∴(x-5)(x-2)=0,
解得x=5或x=2,
∵⊙O1和⊙O2的半徑分別為拋物線y=x2-7x+10與x軸兩個交點的橫坐標,
∴兩圓的半徑分別為:5或2,
∵兩圓相切,
若兩圓相外切,∴兩圓的圓心距O1O2為:5+2=7;
若兩圓相內切,∴兩圓的圓心距O1O2為:5-2=3;
故選D.
點評:此題主要考查圓相切的性質及函數的基本性質,解題的關鍵是理解相切的定義,要分兩種情況來求解.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

6、已知⊙O1和⊙O2的半徑分別為3cm和4cm,圓心距O1O2=6cm,那么⊙O1和⊙O2的位置關系是(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知⊙O1和⊙O2的半徑分別為R、r,連接O1O2交⊙O1于點M、交⊙O2于點N.將一個直角三角尺的直角頂點C放在直線O1O2的上方,讓兩個直角邊所在的直線分別經過點M、N,CM交⊙O1于點A,CN交⊙O2于點B.
(1)求證:O1A∥O2B;
(2)直線AB和直線O1O2能否平行?若能夠,試指出什么條件下,AB∥O1O2;若不能,試說明理由.
(3)是否存在一點C,使CM•CA=CN•CB?若存在,請說明如何確定點C的位置,并證明你的結論;如果不存在,請說明理由.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

4、已知⊙O1和⊙O2的半徑分別為3cm和5cm,兩圓的圓心距是6cm,則兩圓的位置關系是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

17、已知⊙O1和⊙O2的半徑分別為2cm和4cm,當圓心距O1O2的長度在
0≤O1O2<2或O1O2>6
范圍內取值時,兩圓無公共點.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知⊙O1和⊙O2的半徑分別為3cm和4cm,圓心距O1O2=6cm,那么⊙O1和⊙O2的位置關系是
相交
相交

查看答案和解析>>

同步練習冊答案