【題目】如圖,身高1.6米的小明從距路燈的底部(點(diǎn)O)20米的點(diǎn)A沿AO方向行走14米到點(diǎn)C處,小明在A處,頭頂B在路燈投影下形成的影子在M處.

(1)已知燈桿垂直于路面,試標(biāo)出路燈P的位置和小明在C處,頭頂D在路燈投影下形成的影子N的位置.
(2)若路燈(點(diǎn)P)距地面8米,小明從A到C時(shí),身影的長(zhǎng)度是變長(zhǎng)了還是變短了?變長(zhǎng)或變短了多少米?

【答案】
(1)

解:如圖


(2)

解:設(shè)在A處時(shí)影長(zhǎng)AM為x米,在C處時(shí)影長(zhǎng)CN為y米

,解得x=5,

,解得y=1.5,

∴x﹣y=5﹣1.5=3.5

∴變短了,變短了3.5米.


【解析】(1)連接MB并延長(zhǎng),與過點(diǎn)O作的垂直與路面的直線相交于點(diǎn)P,連接PD并延長(zhǎng)交路面于點(diǎn)N,點(diǎn)P、點(diǎn)N即為所求;(2)利用相似三角形對(duì)應(yīng)邊成比例列式求出AM、CN,然后相減即可得解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:如果一個(gè)分式能化成一個(gè)整式與一個(gè)分子為常數(shù)的分式的和的形式,則稱這個(gè)分式為和諧分式.如: ,則和諧分式

(1)下列分式中,屬于和諧分式的是_____(填序號(hào));

;②;③;④

(2)和諧分式化成一個(gè)整式與一個(gè)分子為常數(shù)的分式的和的形式為:_______(要寫出變形過程);

(3)應(yīng)用:先化簡(jiǎn),并求x取什么整數(shù)時(shí),該式的值為整數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC△A′B′C′中,①AB=AB′,②BC=BC′,③AC=AC′,④∠A=∠A′,⑤∠B=∠B′,⑥∠C=∠C,則下列各組條件中使△ABC△A′B′C′全等的是(

A. ④⑤⑥ B. ①②⑥ C. ①③⑤ D. ②⑤⑥

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AC=BC,∠C=90°,DAB的中點(diǎn),DE⊥DF,點(diǎn)E,F分別在AC,BC上,求證:DE=DF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,∠A=150°.第一步△ABC上方確定一點(diǎn)A1,使∠A1BA=∠ABC,∠A1CA=∠ACB,如圖1.第二步△A1BC上方確定一點(diǎn)A2,使∠A2BA1=∠A1BA,∠A2CA1=∠A1CA,如圖2.照此下去,至多能進(jìn)行( )步.

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E,點(diǎn)M在⊙O上,∠M=∠D.

(1)判斷BC、MD的位置關(guān)系,并說(shuō)明理由;
(2)若AE=16,BE=4,求線段CD的長(zhǎng);
(3)若MD恰好經(jīng)過圓心O,求∠D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖,在四邊形ABCD中,AB∥DC,EBC的中點(diǎn),若AE∠BAD的平分線,求證:AD=DC+AB,

(2)如圖,在四邊形ABCD中,AB∥DC,F(xiàn)DC延長(zhǎng)線上一點(diǎn),連接AF,EBC的中點(diǎn),若AE∠BAF的平分線,求證:AB=AF+CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如∠MON30°、OP6,點(diǎn)A、B分別在OMON上;(1)請(qǐng)?jiān)趫D中畫出周長(zhǎng)最小的△PAB(保留畫圖痕跡);(2)請(qǐng)求出(1)中△PAB的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,AB=AC,點(diǎn)D是射線CB上的一動(dòng)點(diǎn)(不與點(diǎn)B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,連接CE

(1)如圖1,當(dāng)點(diǎn)D在線段CB上,且∠BAC=90°時(shí),那么∠DCE= 度;

(2)設(shè)∠BAC= ,∠DCE=

① 如圖2,當(dāng)點(diǎn)D在線段CB上,∠BAC≠90°時(shí),請(qǐng)你探究之間的數(shù)量關(guān)系,并證明你的結(jié)論;

② 如圖3,當(dāng)點(diǎn)D在線段CB的延長(zhǎng)線上,∠BAC≠90°時(shí),請(qǐng)將圖3補(bǔ)充完整,并直接寫出此時(shí)之間的數(shù)量關(guān)系(不需證明).

查看答案和解析>>

同步練習(xí)冊(cè)答案