【題目】下面的多項式中,能因式分解的是( )
A. m2+n2B. m2+4m+1C. m2-nD. m2-2m+1
科目:初中數(shù)學 來源: 題型:
【題目】問題背景:
如圖(a),點A、B在直線l的同側,要在直線l上找一點C,使AC與BC的距離之和最小,我們可以作出點B關于l的對稱點B′,連接A B′與直線l交于點C,則點C即為所求.
(1)實踐運用:
如圖(b),已知,⊙O的直徑CD為4,點A 在⊙O 上,∠ACD=30°,B 為弧AD 的中點,P為直徑CD上一動點,則BP+AP的最小值為 .
(2)知識拓展:
如圖(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分線交BC于點D,E、F分別是線段AD和AB上的動點,求BE+EF的最小值,并寫出解答過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列語句:①全等三角形的周長相等.②面積相等的三角形是全等三角形.③若成軸對稱的兩個圖形中的對稱線段所在直線相交,則這個交點一定在對稱軸上.④全等三角形的所有邊相等.其中正確的有( 。
A. 0個 B. 1個 C. 2個 D. 3個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探索與研究:
方法1:如圖(a),對任意的符合條件的直角三角形繞其銳角頂點旋轉90°所得,所以
∠BAE=90°,且四邊形ACFD是一個正方形,它的面積和四邊形ABFE面積相等,而四邊形ABFE面積等于Rt△BAE和Rt△BFE的面積之和,根據(jù)圖示寫出證明勾股定理的過程;
方法2:如圖(b),是任意的符合條件的兩個全等的Rt△BEA和Rt△ACD拼成的,你能根據(jù)圖示再寫一種證明勾股定理的方法嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】羊年除夕當日微信紅包收發(fā)總量達80.8億個.其中80.8億用科學記數(shù)法可表示為( )
A.8.08×108
B.0.808×109
C.8.08×109
D.0.808×1010
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在△ABC中,∠BAC=90°,AB⊥AC,AB=3,BC=5,EF垂直平分BC,點P為直線EF上的任一點,則AP+BP的最小值是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com