【題目】某學(xué)校為了推進(jìn)球類運(yùn)動(dòng)的普及,成立了多個(gè)球類運(yùn)動(dòng)社團(tuán),為此,學(xué)生會(huì)采取抽樣調(diào)查的方法,從足球、乒乓球、籃球、排球四個(gè)項(xiàng)目調(diào)查了若干名學(xué)生的興趣愛好(要求每位同學(xué)只能選擇其中一種自己喜歡的球類運(yùn)動(dòng)),并將調(diào)查結(jié)果繪制成了如下條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(不完整).請(qǐng)你根據(jù)圖中提供的信息,解答下列問題:
(1)求扇形統(tǒng)計(jì)圖中,“乒乓球”所對(duì)應(yīng)的扇形的圓心角為度;
(2)請(qǐng)將條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該學(xué)校共有學(xué)生1600人,根據(jù)以上數(shù)據(jù)分析,試估計(jì)選擇排球運(yùn)動(dòng)的同學(xué)約有多少人?

【答案】
(1)144
(2)∵本次調(diào)查的總?cè)藬?shù)為100÷25%=400(人),

∴乒乓球的人數(shù):400×40%=160(人),籃球的人數(shù):400﹣100﹣160﹣40=100(人),

籃球所占的百分比為: ×100%=25%,排球所占的百分比為: ×100%=10%,

如圖所示:


(3)1600×10%=160(人),

∴若該學(xué)校共有學(xué)生1600人,根據(jù)以上數(shù)據(jù)分析,估計(jì)選擇排球運(yùn)動(dòng)的同學(xué)約有160人.


【解析】解:(1)360°÷40%=144°, ∴扇形統(tǒng)計(jì)圖中,“乒乓球”所對(duì)應(yīng)的扇形的圓心角為144°,
所以答案是:144.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖的相關(guān)知識(shí)可以得到問題的答案,需要掌握能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目以及事物的變化情況;能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目,但是不能清楚地表示出各個(gè)部分在總體中所占的百分比以及事物的變化情況.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】政府計(jì)劃投資14萬(wàn)億元實(shí)施東進(jìn)戰(zhàn)略.為了解民對(duì)東進(jìn)戰(zhàn)略的關(guān)注情況,佳佳隨機(jī)采訪部分民,并對(duì)采訪情況制作了統(tǒng)計(jì)圖表的一部分如下:

關(guān)注情況

頻數(shù)

頻率

A.高度關(guān)注

m

0.1

B.一般關(guān)注

200

0.5

C.不關(guān)注

60

n

D.不知道

100

0.25

(1)采訪總?cè)藬?shù)為__ __人,m=__ __,n=__ __;

(2)補(bǔ)全統(tǒng)計(jì)圖;

(3)估計(jì)在30 000名民中高度關(guān)注東進(jìn)戰(zhàn)略的人數(shù)約為 人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】王老師、張老師、李老師(女),姚老師四位數(shù)學(xué)老師報(bào)名參加了臨城片青年教師優(yōu)秀課選拔賽,將通過抽簽決定上課節(jié)次,抽簽時(shí)女士?jī)?yōu)先
(1)先抽取的李老師不希望上第一節(jié)課,卻偏偏抽到上第一節(jié)課的概率是;
(2)在李老師已經(jīng)抽到上第一節(jié)課的條件下,求抽簽結(jié)果中,王老師比姚老師先上課的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題:探究一次函數(shù)y=kx+k+2(k是不為0常數(shù))圖象的共性特點(diǎn),探究過程:小明嘗試把x=﹣1代入時(shí),發(fā)現(xiàn)可以消去k,竟然求出了y=2.老師問:結(jié)合一次函數(shù)圖象,這說明了什么?小組討論得出:無論k取何值,一次函數(shù)y=kx+k+2的圖象一定經(jīng)過定點(diǎn)(﹣1,2),老師:如果一次函數(shù)的圖象是經(jīng)過某一個(gè)定點(diǎn)的直線,那么我們把像這樣的一次函數(shù)的圖象定義為“點(diǎn)旋轉(zhuǎn)直線”.已知一次函數(shù)y=(k+3)x+(k﹣1)的圖象是“點(diǎn)選直線”
(1)一次函數(shù)y=(k+3)x+(k﹣1)的圖象經(jīng)過的頂點(diǎn)P的坐標(biāo)是
(2)已知一次函數(shù)y=(k+3)x+(k﹣1)的圖象與x軸、y軸分別相交于點(diǎn)A、B
①若△OBP的面積為3,求k值;
②若△AOB的面積為1,求k值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=kx+k與y= (k≠0)的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,E、F分別是AB、DC邊上的點(diǎn),且AE=CF,
(1)求證:△ADE≌△CBF.
(2)若∠DEB=90°,求證:四邊形DEBF是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊長(zhǎng)為2cm,∠DAB=60°.點(diǎn)P從A點(diǎn)出發(fā),以 cm/s的速度,沿AC向C作勻速運(yùn)動(dòng);與此同時(shí),點(diǎn)Q也從A點(diǎn)出發(fā),以1cm/s的速度,沿射線AB作勻速運(yùn)動(dòng).當(dāng)P運(yùn)動(dòng)到C點(diǎn)時(shí),P、Q都停止運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為ts.
(1)點(diǎn)P由A點(diǎn)運(yùn)動(dòng)到C點(diǎn)需要秒;
(2)當(dāng)P異于A、C時(shí),請(qǐng)說明PQ∥BC;
(3)以P為圓心、PQ長(zhǎng)為半徑作圓,請(qǐng)問:在運(yùn)動(dòng)過程中,⊙P與邊BC有2個(gè)公共點(diǎn)時(shí)t的取值范圍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)y= (k≠0)的圖象交于A、B兩點(diǎn),與x軸交于點(diǎn)C,過點(diǎn)A作AH⊥x軸于點(diǎn)H,點(diǎn)O是線段CH的中點(diǎn),AC=4 ,cos∠ACH= ,點(diǎn)B的坐標(biāo)為(4,n)
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求△BCH的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC 中,AB=AC=6cm,∠B=∠C,BC=4cm,點(diǎn) D AB的中點(diǎn).

(1)如果點(diǎn) P 在線段 BC 上以 1cm/s 的速度由點(diǎn) B 向點(diǎn) C 運(yùn)動(dòng),同時(shí),點(diǎn) Q 在線段 CA 上由點(diǎn) C 向點(diǎn) A 運(yùn)動(dòng).

若點(diǎn) Q 的運(yùn)動(dòng)速度與點(diǎn) P 的運(yùn)動(dòng)速度相等,經(jīng)過 1 秒后,△BPD △CQP 是否全等,請(qǐng)說明理由;

若點(diǎn) Q 的運(yùn)動(dòng)速度與點(diǎn) P 的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn) Q 的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD △CQP 全等?

(2)若點(diǎn) Q 以②中的運(yùn)動(dòng)速度從點(diǎn) C 出發(fā),點(diǎn) P 以原來的運(yùn)動(dòng)速度從點(diǎn) B 同時(shí)出發(fā),都逆時(shí)針沿△ABC 三邊運(yùn)動(dòng),則經(jīng)過 后,點(diǎn) P 與點(diǎn) Q 第一次在△ABC 的 邊上相遇?(在橫線上直接寫出答案,不必書寫解題過程)

查看答案和解析>>

同步練習(xí)冊(cè)答案