精英家教網 > 初中數學 > 題目詳情
(2007•威海)如圖,AB是⊙O的直徑,點C、D、E都在⊙O上,若∠C=∠D=∠E,則∠A+∠B=    度.
【答案】分析:本題關鍵是理清弧的關系,找出等弧,則可根據“同圓中等弧對等角”求解,
由∠C=∠D=∠E,得弧AC=弧BC=弧DE,即弧AC與弧BC的和是半圓,則弧AC對的圓心角是90度,弧AC對的圓周角是45度,則弧AC與弧BC與弧DE分別所對的圓心角的和是270度,有弧AD與弧BE的和的度數是90度,即,弧AD與弧BE分別所對的圓周角的和為45度,連接AC,BC,有∠ACD+∠BCE=45°,∠A+∠B=∠ACE+∠BCD=∠ACD+∠BCE+2∠DCE=45°+90°=135°.
解答:解:∵∠C=∠D=∠E,
∴弧AC=弧BC=弧DE,
∵弧AC與弧BC的和是半圓,
∴弧AC對的圓心角是90°,
弧AC對的圓周角是45°,
∴弧AC與弧BC與弧DE分別所對的圓心角的和是270°,
∴弧AD與弧BE的和的度數是90°,
即,弧AD與弧BE分別所對的圓周角的和為45°,
連接AC,BC,有∠ACD+∠BCE=45°,
∠A+∠B=∠ACE+∠BCD=∠ACD+∠BCE+2∠DCE=45°+90°=135°.
點評:本題利用了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.
練習冊系列答案
相關習題

科目:初中數學 來源:2007年全國中考數學試題匯編《二次函數》(06)(解析版) 題型:解答題

(2007•威海)如圖1,在平面直角坐標系中,點A的坐標為(1,2),點B的坐標為(3,1),二次函數y=x2的圖象記為拋物線l1
(1)平移拋物線l1,使平移后的拋物線過點A,但不過點B,寫出平移后的一個拋物線的函數表達式:______(任寫一個即可);
(2)平移拋物線l1,使平移后的拋物線過A,B兩點,記為拋物線l2,如圖2,求拋物線l2的函數表達式;
(3)設拋物線l2的頂點為C,K為y軸上一點.若S△ABK=S△ABC,求點K的坐標;
(4)請在圖3上用尺規(guī)作圖的方式探究拋物線l2上是否存在點P,使△ABP為等腰三角形.若存在,請判斷點P共有幾個可能的位置(保留作圖痕跡);若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2009年高中段自主招生科學素養(yǎng)模擬卷(數學部分)(解析版) 題型:解答題

(2007•威海)如圖1,在平面直角坐標系中,點A的坐標為(1,2),點B的坐標為(3,1),二次函數y=x2的圖象記為拋物線l1
(1)平移拋物線l1,使平移后的拋物線過點A,但不過點B,寫出平移后的一個拋物線的函數表達式:______(任寫一個即可);
(2)平移拋物線l1,使平移后的拋物線過A,B兩點,記為拋物線l2,如圖2,求拋物線l2的函數表達式;
(3)設拋物線l2的頂點為C,K為y軸上一點.若S△ABK=S△ABC,求點K的坐標;
(4)請在圖3上用尺規(guī)作圖的方式探究拋物線l2上是否存在點P,使△ABP為等腰三角形.若存在,請判斷點P共有幾個可能的位置(保留作圖痕跡);若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2007年山東省威海市中考數學試卷(解析版) 題型:解答題

(2007•威海)如圖1,在平面直角坐標系中,點A的坐標為(1,2),點B的坐標為(3,1),二次函數y=x2的圖象記為拋物線l1
(1)平移拋物線l1,使平移后的拋物線過點A,但不過點B,寫出平移后的一個拋物線的函數表達式:______(任寫一個即可);
(2)平移拋物線l1,使平移后的拋物線過A,B兩點,記為拋物線l2,如圖2,求拋物線l2的函數表達式;
(3)設拋物線l2的頂點為C,K為y軸上一點.若S△ABK=S△ABC,求點K的坐標;
(4)請在圖3上用尺規(guī)作圖的方式探究拋物線l2上是否存在點P,使△ABP為等腰三角形.若存在,請判斷點P共有幾個可能的位置(保留作圖痕跡);若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2007年全國中考數學試題匯編《銳角三角函數》(08)(解析版) 題型:解答題

(2007•威海)如圖,一條小船從港口A出發(fā),沿北偏東40°方向航行20海里后到達B處,然后又沿北偏西30°方向航行10海里后到達C處,問此時小船距港口A多少海里?(結果精確到1海里;參考數據:以下數據可以選用:sin40°≈0.6428,cos40°≈0.7660,tan40°≈0.8391,≈1.732)

查看答案和解析>>

同步練習冊答案