【題目】精準(zhǔn)扶貧,助力蘋(píng)果產(chǎn)業(yè)大發(fā)展.甲、乙兩超市為響應(yīng)黨中央將消除貧困和實(shí)現(xiàn)共同富裕作為重要的奮斗目標(biāo),到種植蘋(píng)果的貧困山區(qū)分別用元以相同的進(jìn)價(jià)購(gòu)進(jìn)質(zhì)量相同的蘋(píng)果.甲超市的銷售方案:將蘋(píng)果按大小分類包裝銷售,其中大蘋(píng)果千克,以進(jìn)價(jià)的倍價(jià)格銷售,剩下的小蘋(píng)果以高于進(jìn)價(jià)的銷售.乙超市的銷售方案:不將蘋(píng)果按大小分類,直接包裝銷售,價(jià)格按甲超市大、小兩種蘋(píng)果售價(jià)的平均數(shù)定價(jià).若兩超市將蘋(píng)果全部售完,其中甲超市獲利元(包含人工工資和運(yùn)費(fèi)).

1)蘋(píng)果進(jìn)價(jià)為每千克多少元?

2)乙超市獲利多少元?并比較哪種銷售方式更合算.

【答案】1102165000;將蘋(píng)果按大小分類包裝銷售更合算.

【解析】

1)先設(shè)蘋(píng)果進(jìn)價(jià)為每千克x元,根據(jù)兩超市將蘋(píng)果全部售完,其中甲超市獲利210000元列出方程,求出x的值,再進(jìn)行檢驗(yàn)即可求出答案;

2)根據(jù)(1)求出每個(gè)超市蘋(píng)果總量,再根據(jù)大、小蘋(píng)果售價(jià)分別為10元和5.5元,求出乙超市獲利,再與甲超市獲利210000元相比較即可.

1)設(shè)蘋(píng)果進(jìn)價(jià)為每千克x元,根據(jù)題意得:

×2x+(110%x20000300000210000,

解得:x10,

經(jīng)檢驗(yàn)x10是原方程的解,

答:蘋(píng)果進(jìn)價(jià)為每千克10元.

2)由(1)得,每個(gè)超市蘋(píng)果總量為:30000(千克),

大、小蘋(píng)果售價(jià)分別為20元和11元,

則乙超市獲利30000×(10)=165000(元),

∵甲超市獲利210000元,

210000165000,

∴將蘋(píng)果按大小分類包裝銷售,更合算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在銳角ABC中,AB=5tanC=3,BDAC于點(diǎn)D,BD=3,點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿AB向終點(diǎn)B運(yùn)動(dòng),過(guò)點(diǎn)PPEAC交邊BC于點(diǎn)E,以PE為邊作RtPEF,使∠EPF=90°,點(diǎn)F在點(diǎn)P的下方,且EFAB.設(shè)PEFABD重疊部分圖形的面積為S(平方單位)(S0),點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒)(t0).

1)求線段AC的長(zhǎng).

2)當(dāng)PEFABD重疊部分圖形為四邊形時(shí),求St之間的函數(shù)關(guān)系式.

3若邊EF與邊AC交于點(diǎn)Q,連結(jié)PQ,如圖②

①當(dāng)PQPEF的面積分成12兩部分時(shí),求AP的長(zhǎng).

②直接寫(xiě)出PQ的垂直平分線經(jīng)過(guò)ABC的頂點(diǎn)時(shí)t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知∠MAN=120°,點(diǎn)C是∠MAN的平分線AQ上的一個(gè)定點(diǎn),點(diǎn)BD分別在AN,AM上,連接BD

【發(fā)現(xiàn)】

1)如圖1,若∠ABC=ADC=90°,則∠BCD=   °,CBD   三角形;

【探索】

2)如圖2,若∠ABC+ADC=180°,請(qǐng)判斷CBD的形狀,并證明你的結(jié)論;

【應(yīng)用】

3)如圖3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若點(diǎn)G,H分別在射線OE,OF上,且PGH為等邊三角形,則滿足上述條件的PGH的個(gè)數(shù)一共有   .(只填序號(hào))

2個(gè)3個(gè)4個(gè)4個(gè)以上

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】等邊三角形ABC,直線1過(guò)點(diǎn)C且垂直AC

1)請(qǐng)?jiān)谥本1上作出點(diǎn)D,使得ABD的周長(zhǎng)最。

2)在(1)的條件下,連接AD,BD,求證,AD2BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為一種新型電子產(chǎn)品在該城市的特約經(jīng)銷商,已知每件產(chǎn)品的進(jìn)價(jià)為40元,該公司每年銷售這種產(chǎn)品的其他開(kāi)支(不含進(jìn)貨價(jià))總計(jì)100萬(wàn)元,在銷售過(guò)程中得知,年銷售量y(萬(wàn)件)與銷售單價(jià)x(元)之間存在如表所示的函數(shù)關(guān)系,并且發(fā)現(xiàn)yx的一次函數(shù).

銷售單價(jià)x(元)

50

60

70

80

銷售數(shù)量y(萬(wàn)件)

5.5

5

4.5

4

(1)求yx的函數(shù)關(guān)系式;

(2)問(wèn):當(dāng)銷售單價(jià)x為何值時(shí),該公司年利潤(rùn)最大?并求出這個(gè)最大值;

【備注:年利潤(rùn)=年銷售額﹣總進(jìn)貨價(jià)﹣其他開(kāi)支】

(3)若公司希望年利潤(rùn)不低于60萬(wàn)元,請(qǐng)你幫助該公司確定銷售單價(jià)的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】九(3)班為了組隊(duì)參加學(xué)校舉行的五水共治知識(shí)競(jìng)賽,在班里選取了若干名學(xué)生,分成人數(shù)相同的甲、乙兩組,進(jìn)行力四次五水共治模擬競(jìng)賽,成績(jī)優(yōu)秀的人數(shù)和優(yōu)秀率分別繪制成如圖統(tǒng)計(jì)圖.

根據(jù)統(tǒng)計(jì)圖,解答下列問(wèn)題:

1)第三次成績(jī)的優(yōu)秀率是多少?并將條形統(tǒng)計(jì)圖補(bǔ)充完整;

2)已求得甲組成績(jī)優(yōu)秀人數(shù)的平均數(shù),方差,請(qǐng)通過(guò)計(jì)算說(shuō)明,哪一組成績(jī)優(yōu)秀的人數(shù)比較穩(wěn)定?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,定義點(diǎn)P(x,y)的變換點(diǎn)為P′(x+y,x﹣y).

(1)如圖1,如果⊙O的半徑為2

①判斷M(2,0),N(﹣2,1)兩個(gè)點(diǎn)的變換點(diǎn)M′、N′與⊙O的位置關(guān)系;

②若點(diǎn)P在直線y=x-2上,點(diǎn)P的變換點(diǎn)P′不在⊙O外,結(jié)合圖形求點(diǎn)P橫坐標(biāo)x的取值范圍.

(2)如圖2,如果⊙O的半徑為1,且P的變換點(diǎn)P′在直線y=﹣2x+5上,求點(diǎn)P與⊙O上任意一點(diǎn)距離的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】進(jìn)價(jià)為每件40元的某商品,售價(jià)為每件50元時(shí),每星期可賣出500件,市場(chǎng)調(diào)查反映:如果每件的售價(jià)每降價(jià)1元,每星期可多賣出100件,但售價(jià)不能低于每件42元,且每星期至少要銷售800件.設(shè)每件降價(jià)xx為正整數(shù)),每星期的利潤(rùn)為y元.

1)求yx的函數(shù)關(guān)系式并寫(xiě)出自變量x的取值范圍;

2)若某星期的利潤(rùn)為5600元,此利潤(rùn)是否是該星期的最大利潤(rùn)?說(shuō)明理由.

3)直接寫(xiě)出售價(jià)為多少時(shí),每星期的利潤(rùn)不低于5000元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(問(wèn)題)

中,,點(diǎn)在直線上(除外),分別經(jīng)過(guò)點(diǎn)和點(diǎn)的垂線,兩條垂線交于點(diǎn),研究的數(shù)量關(guān)系.

(探究發(fā)現(xiàn))

某數(shù)學(xué)興趣小組在探究,的關(guān)系時(shí),運(yùn)用從特殊到一般的數(shù)學(xué)思想,他們發(fā)現(xiàn)當(dāng)點(diǎn)中點(diǎn)時(shí),只需要取邊的中點(diǎn)(如圖1),通過(guò)推理證明就可以得到的數(shù)量關(guān)系,請(qǐng)你按照這種思路直接寫(xiě)出的數(shù)量關(guān)系;

(數(shù)學(xué)思考)

那么點(diǎn)在直線上(除外)(其他條件不變),上面得到的結(jié)論是否仍然成立呢?

請(qǐng)你從點(diǎn)在線段”“點(diǎn)在線段的延長(zhǎng)線上”“點(diǎn)在線段的反向延長(zhǎng)線上三種情況中,任選一種情況,在圖2中畫(huà)出圖形,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案