過邊長為1的正方形的中心O引兩條相互垂直的射線,分別與正方形的邊交于A,B兩點,則線段AB長的取值范圍是   
【答案】分析:設(shè)A、B分別是正方形MNPQ的邊MN和NP上的點,根據(jù)正方形的性質(zhì)可求得AB的長,因為邊長為1,從而不難求得其取值范圍.
解答:解:設(shè)A、B分別是正方形MNPQ的邊MN和NP上的點,
∵O是正方形MNPQ的中心,
∴OM=ON,∠OMN=∠ONM=45°,∠MON=90°,
∴∠AOM+∠AON=90°,
∵OA⊥OB,
∴∠AOB=90°,
∴∠BON+∠AON=90°,
∴∠AOM=∠BON,
∴△AOM≌△BON(ASA),
∴OA=OB,
∴△AOB是等腰直角三角形,
∴AB=OA,
∵正方形MNPQ的邊長是1,
∴OM=,O到MN的距離等于(O到MN的垂線段的長度),
≤OA≤
∴AB的取值范圍是:≤AB≤1.
故答案為:≤AB≤1.
點評:解決本題的關(guān)鍵是作出輔助線構(gòu)造全等三角形.連接中心和相關(guān)的正方形頂點是常用的輔助線方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖線段AB的端點在邊長為1的正方形網(wǎng)格的格點上,現(xiàn)將線段AB繞點A按逆時針方向旋精英家教網(wǎng)轉(zhuǎn)90°得到線段AC.
(1)請你用尺規(guī)在所給的網(wǎng)格中畫出線段AC及點B經(jīng)過的路徑;
(2)若將此網(wǎng)格放在一平面直角坐標(biāo)系中,已知點A的坐標(biāo)為(1,3),點B的坐標(biāo)為(-2,-1),則點C的坐標(biāo)為
 
;
(3)線段AB在旋轉(zhuǎn)到線段AC的過程中,線段AB掃過的區(qū)域的面積為
 
;
(4)若有一張與(3)中所說的區(qū)域形狀相同的紙片,將它圍成一個幾何體的側(cè)面,則該幾何體底面圓的半徑長為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)過邊長為1的正方形的中心O引兩條相互垂直的射線,分別與正方形的邊交于A,B兩點,則線段AB長的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《四邊形》(04)(解析版) 題型:填空題

(2004•淄博)過邊長為1的正方形的中心O引兩條相互垂直的射線,分別與正方形的邊交于A,B兩點,則線段AB長的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《三角形》(06)(解析版) 題型:填空題

(2004•淄博)過邊長為1的正方形的中心O引兩條相互垂直的射線,分別與正方形的邊交于A,B兩點,則線段AB長的取值范圍是   

查看答案和解析>>

同步練習(xí)冊答案