【題目】如圖,把矩形紙片ABCD紙沿對角線折疊,設(shè)重疊部分為△EBD,那么下列說法錯(cuò)誤的是( )

A.△EBD是等腰三角形,EB=ED
B.折疊后∠ABE和∠CBD一定相等
C.折疊后得到的圖形是軸對稱圖形
D.△EBA和△EDC一定是全等三角形

【答案】B
【解析】解:∵ABCD為矩形

∴∠A=∠C,AB=CD

∵∠AEB=∠CED

∴△AEB≌△CED,D不符題意;

∴BE=DE,A不符題意;

∠ABE=∠CDE,B符題意;

∵△EBA≌△EDC,△EBD是等腰三角形

∴過E作BD邊的中垂線,即是圖形的對稱軸,C不符題意.

所以答案是:B.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解矩形的性質(zhì)的相關(guān)知識,掌握矩形的四個(gè)角都是直角,矩形的對角線相等,以及對翻折變換(折疊問題)的理解,了解折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一正方體,六個(gè)面上分別寫有數(shù)字1,2,3,4,5,6,有三個(gè)人從不同的角度觀察的結(jié)果如圖.如果記6的對面的數(shù)字為a,2的對面的數(shù)字為b,那么a+b的值為( )

A.3
B.7
C.8
D.11

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對角線,AG∥DBCB的延長線于G

1)求證:△ADE≌△CBF

2)若四邊形 BEDF是菱形,則四邊形AGBD是什么特殊四邊形?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】樂樂家附近的商場為了吸引顧客,設(shè)立了一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤,為轉(zhuǎn)盤直徑,如圖所示,并規(guī)定:顧客消費(fèi)50元(含50元)以上,就能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(huì),如果轉(zhuǎn)盤停止后,指針正好對準(zhǔn)9折、8折、7折區(qū)域,則顧客就可以獲得相應(yīng)區(qū)域的優(yōu)惠.

1)某顧客在該商場消費(fèi)40元,是否可以獲得轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(huì)?

2)某顧客在該商場正好消費(fèi)66元,則他轉(zhuǎn)動(dòng)一次轉(zhuǎn)盤,獲得三種打折優(yōu)惠的概率分別是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD平分∠BAC,AD=AB,CMAD于點(diǎn)M.請你通過觀察和測量,猜想線段AB,AC之和與線段AM有怎樣的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用“※”定義一種新運(yùn)算:對于任意有理數(shù)ab,規(guī)定abab2+2ab+a

如:121×22+2×1×2+19

1)(﹣2)※3 

2)若316,求a的值;

3)若2xm,(x)※3n(其中x為有理數(shù)),試比較m,n的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】8分)某中學(xué)初二年級抽取部分學(xué)生進(jìn)行跳繩測試.并規(guī)定:每分鐘跳90次以下的為不及格;每分鐘跳9099次的為及格;每分鐘跳100109次的為中等;每分鐘跳110119次的為良好;每分鐘跳120次及以上的為優(yōu)秀.測試結(jié)果整理繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請根據(jù)圖中信息,解答下列各題:

1)參加這次跳繩測試的共有 人;

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)在扇形統(tǒng)計(jì)圖中,中等部分所對應(yīng)的圓心角的度數(shù)是 ;

4)如果該校初二年級的總?cè)藬?shù)是480人,根據(jù)此統(tǒng)計(jì)數(shù)據(jù),請你估算該校初二年級跳繩成績?yōu)?/span>優(yōu)秀的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=(m+1)x2|m|n+4.

(1)當(dāng)mn為何值時(shí),此函數(shù)是一次函數(shù)?

(2)當(dāng)m,n為何值時(shí),此函數(shù)是正比例函數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形的邊長為, 、、分別是、、上的動(dòng)點(diǎn),且

)求證:四邊形是正方形.

)判斷直線是否經(jīng)過某一定點(diǎn),說明理由.

查看答案和解析>>

同步練習(xí)冊答案