關(guān)于函數(shù)y=(k-3)x+k,給出下列結(jié)論
①當(dāng)k≠3時,此函數(shù)是一次函數(shù);
②無論k取什么值,函數(shù)圖象必經(jīng)過點(diǎn)(-1,3);
③若圖象經(jīng)過二、三、四象限,則k的取值范圍是k<0;
④若函數(shù)圖象與x軸的交點(diǎn)始終在正半軸,則k的取值范圍是k<3.
其中正確的是( 。
分析:一次函數(shù)的形式是y=kx+b(k≠0),根據(jù)一次函數(shù)的圖象的性質(zhì)解答該題.
解答:解:①當(dāng)k-3≠0,即k≠3時,函數(shù)y=(k-3)x+k是一次函數(shù).故①結(jié)論正確;
②由原解析式知(y+3x)-k(x+1)=0.所以
y+3x=0
x+1=0
,
解得
x=-1
y=3
,即無論k取何值,該函數(shù)圖象都經(jīng)過點(diǎn)點(diǎn)(-1,3).故②結(jié)論正確;
③當(dāng)該函數(shù)圖象經(jīng)過第二、三、四象限時,k-3<0,且k<0,所以k<0.故③結(jié)論正確;
④若函數(shù)圖象與x軸的交點(diǎn)始終在正半軸,則(k-3)x+k=0,所以x=
k
3-k
>0,解得0<k<3.故④結(jié)論錯誤.
綜上所述,正確的結(jié)論是:①②③.
故選A.
點(diǎn)評:本題考查了一次函數(shù)的定義和一次函數(shù)的性質(zhì).在解答①題時,要注意一次函數(shù)解析式y(tǒng)=(k-3)x+k中自變量的系數(shù)不為零.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

關(guān)于函數(shù)y=2x2-8x,下列敘述中錯誤的是( 。
A、函數(shù)圖象經(jīng)過原點(diǎn)B、函數(shù)圖象的最低點(diǎn)是(2,-8)C、函數(shù)圖象與x軸的交點(diǎn)為(0,0),(4,0)D、函數(shù)圖象的對稱軸是直線x=-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,己知點(diǎn)A(0,4)、B(2,4)、C(4,0),動點(diǎn)P從點(diǎn)C開始沿C-O-A-精英家教網(wǎng)B,以每秒l單位速度勻速運(yùn)動(到達(dá)B點(diǎn)即停止運(yùn)動),設(shè)P運(yùn)動時間為t(s),△PBC的面積為S.
(1)求出四邊形OABC的面積;
(2)寫出S關(guān)于t函數(shù)關(guān)系式;
(3)點(diǎn)P在運(yùn)動過程中是否存在某一時刻t,使得△PBC為等腰三角形?若存在,請求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、某日通過某公路收費(fèi)站的汽車中,共有3000輛次繳了通行費(fèi),其中大車每輛次繳通行費(fèi)10元,小車每輛次繳通行費(fèi)5元.
(1)設(shè)大車?yán)U通行費(fèi)的輛次數(shù)為x,總的通行費(fèi)收人為y元,試寫出y關(guān)于x函數(shù)關(guān)系式;
(2)若估計繳費(fèi)的3000輛次汽車中,大車不少于20%且不大于40%,試求該收費(fèi)站一天收費(fèi)總數(shù)的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

關(guān)于函數(shù)y=3x+1,下列結(jié)論正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

關(guān)于函數(shù)y=-2x+1,下列結(jié)論正確的是( 。

查看答案和解析>>

同步練習(xí)冊答案