【題目】兩個(gè)小組同時(shí)從甲地出發(fā),勻速步行到乙地,甲乙兩地相距7500米.第一組的步行速度是第二組的1.2倍,并且比第二組早15分鐘到達(dá)乙地.設(shè)第二組的步行速度為千米/小時(shí),根據(jù)題意可列方程________

【答案】

【解析】

根據(jù)第二組的速度可得出第一組的速度,依據(jù)“時(shí)間=路程÷速度”即可找出第一、二組分別到達(dá)的時(shí)間,再根據(jù)第一組比第二組早15分鐘(小時(shí))到達(dá)乙地即可列出分式方程,由此即可得出結(jié)論.

解:設(shè)第二組的步行速度為x千米/小時(shí),則第一組的步行速度為1.2x千米/小時(shí),

第一組到達(dá)乙地的時(shí)間為:7.5÷1.2x;

第二組到達(dá)乙地的時(shí)間為:7.5÷x;

∵第一組比第二組早15分鐘(小時(shí))到達(dá)乙地,

∴列出方程為:

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段 AB 經(jīng)過⊙O 的圓心, AC , BD 分別與⊙O 相切于點(diǎn) C ,D .若 AC =BD = 4 ,∠A=45°,則弧CD的長度為(

A.πB.2πC.2πD.4π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線yx22mx+m21y軸交于點(diǎn)C

1)試用含m的代數(shù)式表示拋物線的頂點(diǎn)坐標(biāo);

2)將拋物線yx22mx+m21沿直線y=﹣1翻折,得到的新拋物線與y軸交于點(diǎn)D.若m0CD8,求m的值;

3)已知A2k,0),B0,k),在(2)的條件下,當(dāng)線段AB與拋物線yx22mx+m21只有一個(gè)公共點(diǎn)時(shí),直接寫出k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形中,分別是上的點(diǎn),且,則有結(jié)論成立;

如圖2,在四邊形中,分別是上的點(diǎn),且的一半, 那么結(jié)論是否仍然成立?若成立,請(qǐng)證明;不成立,請(qǐng)說明理由.

若將中的條件改為:如圖3,在四邊形中,,延長到點(diǎn),延長到點(diǎn),使得仍然是的一半,則結(jié)論是否仍然成立?若成立,請(qǐng)證明;不成立,請(qǐng)寫出它們的數(shù)量關(guān)系并證明

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綠色無公害蔬菜基地有甲、乙兩種植戶,他們種植了兩類蔬菜,兩種植戶種植的兩類蔬菜的種植面積與總收入如下表:

種植戶

種植類蔬菜面積(單位:畝)

種植類蔬菜面積(單位:畝)

總收入(單位:元)

說明:不同種植戶種植的同類蔬菜每畝的平均收入相等;畝為土地面積單位

兩類蔬菜每畝的平均收入各是多少元?

某種植戶準(zhǔn)備租畝地用來種植兩類蔬菜,為了使總收入不低于元且種植類蔬菜的面積多于種植類蔬菜的面積(兩類蔬菜的種植面積均為整數(shù)),求該種植戶所有租地方案;

的基礎(chǔ)上,指出哪種方案使總收入最大,并求出最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線ykx+b(k0),經(jīng)過點(diǎn)(60),且與坐標(biāo)軸圍成的三角形的面積是9,與函數(shù)y(x0)的圖象G交于A,B兩點(diǎn).

(1)求直線的表達(dá)式;

(2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫作整點(diǎn).記圖象G在點(diǎn)A、B之間的部分與線段AB圍成的區(qū)域(不含邊界)W

當(dāng)m2時(shí),直接寫出區(qū)域W內(nèi)的整點(diǎn)的坐標(biāo)   ;

若區(qū)域W內(nèi)恰有3個(gè)整數(shù)點(diǎn),結(jié)合函數(shù)圖象,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線與反比例函數(shù)的圖象交于、兩點(diǎn),,則的值為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABC中,∠C=90°,BC=8cm,ACAB=35,點(diǎn)P從點(diǎn)B出發(fā)沿BC向點(diǎn)C2cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)C出發(fā)沿CA向點(diǎn)A1cm/s的速度移動(dòng),如果P、Q分別從B、C同時(shí)出發(fā):

1)經(jīng)過多少秒后,CPQ的面積為8cm

2)經(jīng)過多少秒時(shí),以CP、Q為頂點(diǎn)的三角形恰與ABC相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2017江西省)如圖1,研究發(fā)現(xiàn),科學(xué)使用電腦時(shí),望向熒光屏幕畫面的視線角”α約為20°,而當(dāng)手指接觸鍵盤時(shí),肘部形成的手肘角”β約為100°.圖2是其側(cè)面簡化示意圖,其中視線AB水平,且與屏幕BC垂直.

(1)若屏幕上下寬BC=20cm,科學(xué)使用電腦時(shí),求眼睛與屏幕的最短距離AB的長;

(2)若肩膀到水平地面的距離DG=100cm,上臂DE=30cm,下臂EF水平放置在鍵盤上,其到地面的距離FH=72cm.請(qǐng)判斷此時(shí)β是否符合科學(xué)要求的100°?

(參考數(shù)據(jù):sin69°≈,cos21°≈,tan20°≈,tan43°≈,所有結(jié)果精確到個(gè)位)

查看答案和解析>>

同步練習(xí)冊(cè)答案