通過學(xué)習(xí)銳角三角比,我們知道在直角三角形中,一個銳角的大小與兩條邊長的比值是一一對應(yīng)的,因此,兩條邊長的比值與角的大小之間可以相互轉(zhuǎn)化.類似的,可以在等腰三角形中建立邊角之間的聯(lián)系.我們定義:等腰三角形中底邊與腰的比叫做底角的鄰對(can),如圖(1)在△ABC中,AB=AC,底角B的鄰對記作canB,這時canB=數(shù)學(xué)公式,容易知道一個角的大小與這個角的鄰對值也是一一對應(yīng)的.根據(jù)上述角的鄰對的定義,解下列問題:
(1)can30°=______;
(2)如圖(2),已知在△ABC中,AB=AC,canB=數(shù)學(xué)公式,S△ABC=24,求△ABC的周長.

解:
(1)過點(diǎn)A作AD⊥BC于點(diǎn)D,
∵∠B=30°,
∴cos∠B==,
∴BD=AB,
∵△ABC是等腰三角形,
∴BC=2BD=AB,
故can30°==;

(2)過點(diǎn)A作AE⊥BC于點(diǎn)E,
∵canB=,則可設(shè)BC=8x,AB=5x,
∴AE==3x,
∵S△ABC=24,
BC×AE=12x2=24,
解得:x=
故AB=AC=5,BC=8,
從而可得△ABC的周長為18
分析:(1)過點(diǎn)A作AD⊥BC于點(diǎn)D,根據(jù)∠B=30°,可得出BD=AB,結(jié)合等腰三角形的性質(zhì)可得出BC=AB,繼而得出canB;
(2)過點(diǎn)A作AE⊥BC于點(diǎn)E,根據(jù)canB=,設(shè)BC=8x,AB=5x,再由S△ABC=24,可得出x的值,繼而求出周長.
點(diǎn)評:本題考查了解直角三角形及勾股定理的知識,解答本題的關(guān)鍵是熟練掌握等腰三角形的性質(zhì),表示出各個邊的長度.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•奉賢區(qū)一模)通過學(xué)習(xí)銳角三角比,我們知道在直角三角形中,一個銳角的大小與兩條邊長的比值是一一對應(yīng)的,因此,兩條邊長的比值與角的大小之間可以相互轉(zhuǎn)化.類似的,可以在等腰三角形中建立邊角之間的聯(lián)系.我們定義:等腰三角形中底邊與腰的比叫做底角的鄰對(can),如圖(1)在△ABC中,AB=AC,底角B的鄰對記作canB,這時canB=
底邊
=
BC
AB
,容易知道一個角的大小與這個角的鄰對值也是一一對應(yīng)的.根據(jù)上述角的鄰對的定義,解下列問題:
(1)can30°=
3
3
;
(2)如圖(2),已知在△ABC中,AB=AC,canB=
8
5
,S△ABC=24,求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2014•寶山區(qū)一模)通過銳角三角比的學(xué)習(xí),我們已經(jīng)知道在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長比與角的大小之間可以相互轉(zhuǎn)化.類似的我們可以在等腰三角形中建立邊角之間的聯(lián)系.我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖在△ABC中,AB=AC,
頂角A的正對記作sadA,這時sadA=
底邊
=
BC
AB
.我們?nèi)菀字酪粋角的大小與這個角的正對值也是互相唯一確定的.根據(jù)上述角的正對定義,解下列問題:
(1)sad60°=
1
1
;sad90°=
2
2

(2)對于0°<A<180°,∠A的正對值sadA的取值范圍是
0<sadA<2
0<sadA<2

(3)試求sad36°的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年上海市奉賢區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

通過學(xué)習(xí)銳角三角比,我們知道在直角三角形中,一個銳角的大小與兩條邊長的比值是一一對應(yīng)的,因此,兩條邊長的比值與角的大小之間可以相互轉(zhuǎn)化.類似的,可以在等腰三角形中建立邊角之間的聯(lián)系.我們定義:等腰三角形中底邊與腰的比叫做底角的鄰對(can),如圖(1)在△ABC中,AB=AC,底角B的鄰對記作canB,這時canB=,容易知道一個角的大小與這個角的鄰對值也是一一對應(yīng)的.根據(jù)上述角的鄰對的定義,解下列問題:
(1)can30°=______

查看答案和解析>>

同步練習(xí)冊答案