【題目】如圖,在△ABC中,∠B與∠C的平分線交于點O,過點O作DE∥BC,分別交AB、AC于點D、E.若AB=5,AC=4,則△ADE的周長是 .
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y= x2﹣ (b+1)x+ (b是實數(shù)且b>2)與x軸的正半軸分別交于點A、B(點A位于點B的左側),與y軸的正半軸交于點C.
(1)點B的坐標為 , 點C的坐標為(用含b的代數(shù)式表示);
(2)請你探索在第一象限內是否存在點P,使得四邊形PCOB的面積等于2b,且△PBC是以點P為直角頂點的等腰直角三角形?如果存在,求出點P的坐標;如果不存在,請說明理由;
(3)請你進一步探索在第一象限內是否存在點Q,使得△QCO,△QOA和△QAB中的任意兩個三角形均相似(全等可作相似的特殊情況)?如果存在,求出點Q的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A、B兩點,與y軸交于點C,點O為坐標原點,點D為拋物線的頂點,點E在拋物線上,點F在x軸上,四邊形OCEF為矩形,且OF=2,EF=3,
(1)求拋物線所對應的函數(shù)解析式;
(2)求△ABD的面積;
(3)將△AOC繞點C逆時針旋轉90°,點A對應點為點G,問點G是否在該拋物線上?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知反比例函數(shù)y= (k1>0),y= (k2<0).點A在y軸的正半軸上,過點A作直線BC∥x軸,且分別與兩個反比例函數(shù)的圖象交于點B和C,連接OC、OB.若△BOC的面積為 ,AC:AB=2:3,則k1= , k2= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】平面上有兩條直線AB、CD相交于點O,且∠BOD=150°(如圖),現(xiàn)按如下要求規(guī)定此平面上點的“距離坐標”: ①點O的“距離坐標”為(0,0);
②在直線CD上,且到直線AB的距離為p(p>0)的點的“距離坐標”為(p,0);在直線AB上,且到直線CD的距離為q(q>0)的點的“距離坐標”為(0,q);
③到直線AB、CD的距離分別為p,q(p>0,q>0)的點的“距離坐標”為(p,q).
設M為此平面上的點,其“距離坐標”為(m,n),根據(jù)上述對點的“距離坐標”的規(guī)定,解決下列問題:
(1)畫出圖形(保留畫圖痕跡): ①滿足m=1,且n=0的點M的集合;
②滿足m=n的點M的集合;
(2)若點M在過點O且與直線CD垂直的直線l上,求m與n所滿足的關系式.(說明:圖中OI長為一個單位長)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,頂點為P(4,﹣4)的二次函數(shù)圖象經過原點(0,0),點A在該圖象上,OA交其對稱軸l于點M,點M、N關于點P對稱,連接AN、ON,
(1)求該二次函數(shù)的關系式;
(2)若點A的坐標是(6,﹣3),求△ANO的面積;
(3)若點A在對稱軸l右側的二次函數(shù)圖象上運動時,請解答下面問題:
①證明:∠ANM=∠ONM;
②△ANO能否為直角三角形?如果能,請求出所有符合條件的點A的坐標;如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列4個結論:①abc>0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0;其中正確的結論有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一段拋物線:y=﹣x(x﹣3)(0≤x≤3),記為C1 , 它與x軸交于點O,A1;將C1繞點A1旋轉180°得C2 , 交x軸于點A2;將C2繞點A2旋轉180°得C3 , 交x軸于點A3;…,如此進行下去,直至得Cn . 若P(2014,m)在第n段拋物線Cn上,則m=
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com