【題目】閱讀理解:

(1)如圖(1),等邊△ABC內(nèi)有一點P到頂點A,B,C的距離分別為3,4,5,則∠APB=
分析:由于PA,PB不在一個三角形中,為了解決本題我們可以將△ABP繞頂點A旋轉(zhuǎn)到△ACP′處,此時△ACP′≌ , 這樣,就可以利用全等三角形知識,將三條線段的長度轉(zhuǎn)化到一個三角形中從而求出∠APB的度數(shù).
(2)請你利用第(1)題的解答思想方法,解答下面問題:已知如圖(2),△ABC中,∠CAB=90°,AB=AC,E、F為BC上的點且∠EAF=45°,求證:BE2+CF2=EF2

【答案】
(1)150°;△ABP
(2)

解:把△ACF繞點A順時針旋轉(zhuǎn)90°,得到△ABG.連接EG.

則△ACF≌△ABG.

∴AG=AF,BG=CF,∠ABG=∠ACF=45°.

∵∠BAC=90°,∠GAF=90°.

∴∠GAE=∠EAF=45°,

在△AEG和△AFE中,

∴△AEG≌△AFE(SAS).

∴EF=EG,

又∵∠GBE=90°,

∴BE2+BG2=EG2

即BE2+CF2=EF2.則三角形是直角三角形.


【解析】解:(1)將△ABP繞頂點A旋轉(zhuǎn)到△ACP′處,
∴△BAP≌△CAP′,
∴AB=AC,AP=AP′,∠BAP=∠CAP′,
∴∠BAC=∠PAP′=60°,
∴△APP′是等邊三角形,
∴∠APP′=60°,
因為B P P′不一定在一條直線上
連接PC,
∴P′C=PB=4,PP′=PA=3,PC=5,
∴∠PP′C=90°,
∴△PP′C是直角三角形,
∴∠APB=∠AP′C=∠APP′+∠P′PC=60°+90°=150°,
∴∠BPA=150°;
故答案是:150°,△ABP;
【考點精析】利用全等三角形的性質(zhì)和勾股定理的概念對題目進行判斷即可得到答案,需要熟知全等三角形的對應(yīng)邊相等; 全等三角形的對應(yīng)角相等;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某化妝品店老板到廠家選購A、B兩種品牌的化妝品,若購進A品牌的化妝品5套,B品牌的化妝品6套,需要950元;若購進A品牌的化妝品3套,B品牌的化妝品2套,需要450元.

A、B兩種品牌的化妝品每套進價分別為多少元?

若銷售1A品牌的化妝品可獲利30元,銷售1B品牌的化妝品可獲利20元,根據(jù)市場需求,化妝品店老板決定,購進B品牌化妝品的數(shù)量比購進A品牌化妝品數(shù)量的2倍還多4套,且B品牌化妝品最多可購進40套,這樣化妝品全部售出后,可使總的獲利不少于1200元,問有幾種進貨方案?如何進貨?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形ABCD在平面直角坐標系中,已知點A(0,a),B(0,6),C(b,6),且滿足a=+8.

(1)請直接寫出A、C、D三個點的坐標,A   ,C   ,D   ;

(2)連接線段BD、OD,試求三角形BOD的面積;

(3)若長方形ABCD以每秒1個單位長度勻速向下運動,設(shè)運動的時間為t秒,問是否存在某一時刻,三角形BOD的面積與長方形ABCD的面積相等?若存在,請求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電腦公司開發(fā)出一種軟件,從研發(fā)到年初上市后,經(jīng)歷了從虧損到盈利的過程,如圖中的圖象是拋物線的一段,它刻畫了該軟件上市以來累積利潤S(萬元)與銷售時間t(月)之間的函數(shù)關(guān)系(即前t個月的利潤總和S與t之間的函數(shù)關(guān)系),根據(jù)圖象提供的信息,解答下列問題:
(1)該種軟件上市第幾個月后開始盈利?
(2)求累積利潤S(萬元)與時間t(月)之間的函數(shù)表達式;
(3)截止到幾月末,公司累積利潤達到30萬元?
(4)求公司第6個月末所累積的利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是一個新款水杯,水杯不盛水時按如圖2所示的位置放置,這樣可以快速晾干杯底,干凈透氣;將圖2的主體部分的抽象成圖3,此時杯口與水平直線的夾角35°,四邊形ABCD可以看作矩形,測得AB=10cm,BC=8cm,過點A作AF⊥CE,交CE于點F.
(1)求∠BAF的度數(shù);(sin35°≈0.5736,cos35°≈0.8192,tan35°≈0.7002)
(2)求點A到水平直線CE的距離AF的長(精確到0.1cm)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在扇形OAB中,∠AOB=90°,正方形CDEF的頂點C是弧AB的中點,點D在OB上,點E在OB的延長線上,若正方形CDEF的邊長為2,則圖中陰影部分的面積為(
A.π﹣2
B.2π﹣2
C.4π﹣4
D.4π﹣8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一根可伸縮的魚竿,魚竿是用10節(jié)大小不同的空心套管連接而成.閑置時魚竿可收縮,完全收縮后,魚竿長度即為第1節(jié)套管的長度(如圖1所示):使用時,可將魚竿的每一節(jié)套管都完全拉伸(如圖2所示).圖3是這跟魚竿所有套管都處于完全拉伸狀態(tài)下的平面示意圖.已知第1節(jié)套管長50cm,第2節(jié)套管長46cm,以此類推,每一節(jié)套管均比前一節(jié)套管少4cm.完全拉伸時,為了使相鄰兩節(jié)套管連接并固定,每相鄰兩節(jié)套管間均有相同長度的重疊,設(shè)其長度為xcm.

(1)請直接寫出第5節(jié)套管的長度;

(2)當這根魚竿完全拉伸時,其長度為311cm,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,點C是⊙O上一點,AD與過點C的切線垂直,垂足為點D,直線DC與AB的延長線相交于點P,弦CE平分∠ACB,交AB于點F,連接BE.
(1)求證:AC平分∠DAB;
(2)求證:△PCF是等腰三角形;
(3)若AF=6,EF=2 ,求⊙O 的半徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)操作發(fā)現(xiàn):

如圖,在矩形ABCD中,E是BC的中點,將△ABE沿AE折疊后得到△AFE,點F在矩形ABCD內(nèi)部,延長AF交CD于點G.猜想線段GF與GC有何數(shù)量關(guān)系?并證明你的結(jié)論.

(2)類比探究:

如圖,將(1)中的矩形ABCD改為平行四邊形,其它條件不變,(1)中的結(jié)論是否仍然成立?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案