如圖所示,在平面直角坐標系xOy中,正方形OABC的邊長為2cm,點A、C分別在y軸的負半軸和x軸的正半軸上,拋物線y=ax2+bx+c經(jīng)過點A、B,且12a+5c=0.
(1)求拋物線的解析式;
(2)如果點P由點A開始沿AB邊以2cm/s的速度向點B移動,同時點Q由點B開始沿BC邊以1cm/s的速度向點C移動.
①移動開始后第t秒時,設(shè)S=PQ2(cm2),試寫出S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍;
②當S取得最小值時,在拋物線上是否存在點R,使得以P、B、Q、R為頂點的四邊形是平行四邊形?如果存在,求出R點的坐標;如果不存在,請說明理由.

【答案】分析:(1)根據(jù)已知條件,結(jié)合正方形的性質(zhì)求出A、B點的坐標,利用一般式根據(jù)待定系數(shù)法求解.
(2)①用t表示出PB、BQ的長,利用勾股定理建立起它們之間的關(guān)系;
②利用①中關(guān)系式,根據(jù)非負數(shù)的性質(zhì)求出S取最小值時的t的取值,計算出PB、BQ的長,然后根據(jù)R的位置進行分類討論.
解答:解:(1)據(jù)題意知:A(0,-2),B(2,-2)
∵A點在拋物線上,
∴c=-2
∵12a+5c=0,
∴a=(1分)
由AB=2知拋物線的對稱軸為:x=1
即:-=1,b=-
∴拋物線的解析式為:y=x2-x-2.(3分)

(2)①由圖象知:PB=2-2t,BQ=t,
∴S=PQ2=PB2+BQ2=(2-2t)2+t2(4分)
即S=5t2-8t+4(0≤t≤1).(5分)
②假設(shè)存在點R,可構(gòu)成以P、B、R、Q為頂點的平行四邊形,
∵S=5t2-8t+4(0≤t≤1),
∴S=5(t2+(0≤t≤1),
∴當t=時,S取得最小值.(6分)
這時PB=2=0.4,BQ=0.8,P(1.6,-2),Q(2,-1.2).(7分)
分情況討論:
(A)假設(shè)R在BQ的右邊,這時QR=∥PB,則:
R的橫坐標為2.4,R的縱坐標為-1.2,即(2.4,-1.2),
代入y=x2-x-2,左右兩邊相等,
∴這時存在R(2.4,-1.2)滿足題意.(8分)
(B)假設(shè)R在BQ的左邊,這時PR=∥QB,
則:R的橫坐標為1.6,縱坐標為-1.2,即(1.6,-1.2)
代入y=x2-x-2,左右兩邊不相等,R不在拋物線上.(9分)
(C)假設(shè)R在PB的下方,這時PR=∥QB,
則:R(1.6,-2.8)代入y=x2-x-2,左右不相等,R不在拋物線上.
綜上所述,存在一點R(2.4,-1.2)滿足題意.(10分)
點評:此題主要考查二次函數(shù)的有關(guān)知識,是一個典型的動點問題.作為一個壓軸題,綜合性強,難度較大,并運用了分類討論思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在平面直角坐標系中,一次函數(shù)y=kx+1的圖象與反比例函數(shù)y=
9x
的圖象在第一象限相精英家教網(wǎng)交于點A,過點A分別作x軸、y軸的垂線,垂足為點B、C.如果四邊形OBAC是正方形,求一次函數(shù)的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、如圖所示,在平面直角坐標系中,點A、B的坐標分別為(-2,0)和(2,0).月牙①繞點B順時針旋轉(zhuǎn)90°得到月牙②,則點A的對應(yīng)點A′的坐標為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在平面直角坐標系中,一顆棋子從點P處開始依次關(guān)于點A,B,C作循環(huán)對稱跳動,即第一次從點P跳到關(guān)于點A的對稱點M處,第二次從點M跳到關(guān)于點B的對稱點N處,第三次從點N跳到關(guān)于點C的對稱點處,…如此下去.
(1)在圖中標出點M,N的位置,并分別寫出點M,N的坐標:
 

(2)請你依次連接M、N和第三次跳后的點,組成一個封閉的圖形,并計算這個圖形的面積;
(3)猜想一下,經(jīng)過第2009次跳動之后,棋子將落到什么位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在平面直角坐標系xoy中,有一組對角線長分別為1,2,3的正方形A1B1C1O、A2B2C2B1、A3B3C3B2,其對角線OB1、B1B2、B2 B3依次放置在y軸上(相鄰頂點重合),依上述排列方式,對角線長為n的第n個正方形的頂點An的坐標為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在平面直角坐標系中,拋物線y=ax2+bx+3(a≠0)經(jīng)過A(-1,0)、B(3,0)兩點,拋物線與y軸交點為C,其頂點為D,連接BD,點P是線段BD上一個動點(不與B、D重合),過點P作y軸的垂線,垂足為E,連接精英家教網(wǎng)BE.
(1)求拋物線的解析式,并寫出頂點D的坐標;
(2)如果P點的坐標為(x,y),△PBE的面積為s,求s與x的函數(shù)關(guān)系式,寫出自變量x的取值范圍,并求出s的最大值;
(3)在(2)的條件下,當s取得最大值時,過點P作x的垂線,垂足為F,連接EF,把△PEF沿直線EF折疊,點P的對應(yīng)點為P',請直接寫出P'點坐標,并判斷點P'是否在該拋物線上.

查看答案和解析>>

同步練習(xí)冊答案