【題目】我們已經(jīng)知道,有一個內(nèi)角是直角的三角形是直角三角形.其中直角所在的兩條邊叫直角邊,直角所對的邊叫斜邊(如圖①所示).數(shù)學(xué)家已發(fā)現(xiàn)在一個直角三角形中,兩個直角邊邊長的平方和等于斜邊長的平方.如果設(shè)直角三角形的兩條直角邊長度分別是,斜邊長度是,那么可以用數(shù)學(xué)語言表達:

1在圖,, ,則 ;

2)觀察圖,利用面積與代數(shù)恒等式的關(guān)系,試說明的正確性.其中兩個相同的直角三角形邊AE、EB在一條直線上;

3)如圖所示,折疊長方形ABCD的一邊AD,使點D落在BC邊的點F處,已知AB8,BC10,利用上面的結(jié)論求EF的長

【答案】112; (2)答案見解析;(3)5

【解析】試題分析:

1)利用題中所給公式: ,代入即可解出的值;

2先用“梯形面積計算公式”計算出圖的面積,再分別計算圖中三個三角形的面積并相加得到圖的面積,利用兩次所求面積相等得到等式,把等式變形即可得到公式: ;

3)由矩形和折疊的性質(zhì)可得:AF=AD=BC=10,DC=AB=8EF=DE;在RtABF中,由題中所給結(jié)論可計算出BF的長,從而可得FC的長;設(shè)EF= ,則DE= ,EC= ,這樣在RtEFC中,由題中所給結(jié)論可得關(guān)于的方程,解方程即可求得EF的長.

試題解析

1,代入

;

2圖①的面積,

圖①的面積S梯形ABCD,

,

,

.

3)由四邊形ABCD是矩形和折疊的性質(zhì)可得, , EF=DE,

由題意可得:在RtABF中, ,即解得 ,

又∵,

,

設(shè),則, ,

∵在RtECF中, ,

解得 ,即.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列四個多項式,能因式分解的是( )

A. a2b2 B. a2a2

C. a23b D. (xy)24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠ACB=90°,AC=3,BC=4.將邊AC沿CE翻折,使點A落在AB上的點D處;再將邊BC沿CF翻折,使點B落在CD的延長線上的點B′處,兩條折痕與斜邊AB分別交于點E、F,則線段B′F的長為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點O為直線AB上一點,過O點作射線OC,使∠AOC:∠BOC=1:2,將一直角三角板的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.

(1)將圖1中的三角板繞點O按逆時針方向旋轉(zhuǎn)至圖2的位置,使得ON落在射線OB上,此時三角板旋轉(zhuǎn)的角度為度;
(2)繼續(xù)將圖2中的三角板繞點O按逆時針方向旋轉(zhuǎn)至圖3的位置,使得ON在∠AOC的內(nèi)部.試探究∠AOM與∠NOC之間滿足什么等量關(guān)系,并說明理由;
(3)在上述直角三角板從圖1旋轉(zhuǎn)到圖3的位置的過程中,若三角板繞點O按15°每秒的速度旋轉(zhuǎn),當(dāng)直角三角板的直角邊ON所在直線恰好平分∠AOC時,求此時三角板繞點O的運動時間t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,AB=20cmBC=16cm,點D為線段AB的中點,動點P2cm/s的速度從B點出發(fā)在射線BC上運動,同時點Qcm/s(>0)的速度從C點出發(fā)在線段CA上運動,設(shè)運動時間為秒。

1)若AB=AC,P在線段BC上,求當(dāng)為何值時,能夠使全等?

2)若,求出發(fā)幾秒后, 為直角三角形?

3)若,當(dāng)的度數(shù)為多少時, 為等腰三角形?(請直接寫出答案,不必寫出過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果+160元表示增加160元,那么﹣60元表示(
A.增加100元
B.增加60元
C.減少60元
D.減少220元

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列長度的三條線段能組成三角形的是(  )

A. 5 cm,3 cm,1 cm B. 2 cm,5 cm,8 cm

C. 1 cm,3 cm,4 cm D. 1.5 cm,2 cm,2.5 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計算正確的是( )
A.a2+b3=2a5
B.a4÷a=a4
C.a2a3=a6
D.(﹣a23=﹣a6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰三角形的兩邊長分別為24,則其周長為________

查看答案和解析>>

同步練習(xí)冊答案