【題目】如圖,這是一個數(shù)值轉(zhuǎn)換機(箭頭為數(shù)進入轉(zhuǎn)換機的路徑,方框是對進入的數(shù)進行轉(zhuǎn)換的轉(zhuǎn)換機).

(1)當輸入7、2018這兩個數(shù)時,求出它們各自輸出的結果;

(2)若輸入一非零數(shù),其輸出結果為0,則輸入的數(shù)是多少?(找一個即可)

(3)若輸出的結果是2,請直接寫出輸入的數(shù).(用含自然數(shù)n的代數(shù)式表示)

【答案】(1)7→2→-2→2;-2018→+2018→(2)如輸入數(shù)字5:5→0→0→0(3)5n+2或5n-

【解析】

(1)分別將四個數(shù)代入數(shù)值轉(zhuǎn)換機,計算即可得到輸出結果;

(2)當輸入數(shù)字為0得到結果為0;

(3)根據(jù)數(shù)軸轉(zhuǎn)換機的規(guī)律表示出結果即可.

(1)若輸入數(shù)字為7時,72,得到7+-5=2,

得到相反數(shù)為-2,絕對值為2,輸出結果為2;

若輸入數(shù)字為-2018,-2018<2,相反數(shù)為2012,倒數(shù)為,輸出數(shù)字為

2)根據(jù)題意得:輸入數(shù)字為05、10、15…5的倍數(shù)均可),結果為0;

(3)5n+2或5n-

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,四邊形ABCD是平行四邊形,AECF,且分別交對角線BD于點E,F

(1)求證:AEB≌△CFD;

(2)連接AF,CE,若∠AFE=CFE,求證:四邊形AFCE是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)學課上,老師提出如下問題: 如圖1,將銳角三角形紙片ABC(BC>AC)經(jīng)過兩次折疊,得到邊AB,BC,CA上的點D,E,F(xiàn).使得四邊形DECF恰好為菱形.
小明的折疊方法如下:
如圖2,(1)AC邊向BC邊折疊,使AC邊落在BC邊上,得到折痕交AB于D; (2)C點向AB邊折疊,使C點與D點重合,得到折痕交BC邊于E,交AC邊于F.
老師說:“小明的作法正確.”
請回答:小明這樣折疊的依據(jù)是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延長CA至點E,使AE=AC;延長CB至點F,使BF=BC.連接AD,AF,DF,EF.延長DB交EF于點N.
(1)求證:AD=AF;
(2)試判斷四邊形ABNE的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O為原點,A,B為數(shù)軸上兩點,AB=15,且OA:OB=2

(1)A,B對應的數(shù)分別為      

(2)點A,B分別以2個單位/秒和5個單位/秒的速度相向而行,則幾秒后A,B相距1個單位長度?

(3)點AB以(2)中的速度同時向右運動,點P從原點O4個單位秒的速度向右運動,是否存在常數(shù)m,使得3AP+2PB﹣mOP為定值?若存在,請求出m值以及這個定值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一條拋物線與x軸相交于A、B兩點,其頂點P在折線C﹣D﹣E上移動,若點C、D、E的坐標分別為(﹣1,4)、(3,4)、(3,1),點B的橫坐標的最小值為1,則點A的橫坐標的最大值為( )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】化簡求值:

(1)當a=﹣1,b=2時,求代數(shù)式﹣2(ab﹣3b2)﹣[6b2﹣(ab﹣a2]的值

(2)先化簡,再求值:4xy﹣2(x2﹣3xy+2y2+3(x2﹣2xy),當(x﹣3)2+|y+1|=0,求式子的值

(3)若(2mx2﹣x+3)﹣(3x2﹣x﹣4)的結果與x的取值無關,求m的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1如圖1,已知:在ABC中,BAC90°,AB=AC,直線m經(jīng)過點A,BD直線m, CE直線m,垂足分別為點D、E.證明:DE=BD+CE.

2 如圖2,將1中的條件改為:在ABC中,AB=AC,DA、E三點都在直線m,并且有BDA=AEC=BAC=,其中為任意銳角或鈍角.請問結論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.

3拓展與應用:如圖3D、EDA、E三點所在直線m上的兩動點(D、A、E三點互不重合),FBAC平分線上的一點,ABFACF均為等邊三角形,連接BDCE,BDA=AEC=BAC,試判斷DEF的形狀.

查看答案和解析>>

同步練習冊答案